
© Intel Corporation, 1978

APPLICATION
NOTE

1·3

AP-26

9800752

iSBC 80/10A-SYSTEM 80/10
Single Board Computer
Applications

1·4

Contents

INTRODUCTION. • . . • . . . •• 1-5

OVERVIEW .•...•....................... 1-5

SHC CONFIGURATION OPTIONS .•..•... 1-7

Serial I/O Options 1-7
Paraliell/O Options , 1-8
Bus Interfacing. .. 1-8

APPLICATIONS ...•........••.....•...• 1-10

Instrumentation 1-10
Communication 1-15
Process Control 1-23
110 Device Controller 1-27

CONCLUSION ..•....................... 1-31

APPENDIX A - iSBC SO/lOA
SCHEMATICS '" ...••........•..... 1-33

INTRODUCTION

The recent entry of the single board computer into
the broad field of electronic applications is sub­
stantiating the billing as a "super component".
Single board computers provide a solution to
several problems that have not been solved by the
use of conventional computers: cost, size, and
design specialization.

Many potential microcomputer applications have
been overlooked because of the design tasks
required to build a microcomputer system. These
tasks traditionally include interfacing of the system
clock, read/write memory, I/O ports and drivers,
serial communications interface, bus control logic
and drivers. Intel's iSBC 80/1 OA enables the design
engineer to concentrate on the application of
microcomputers, rather than on implementation
details.

This application note begins with an overview of
the Intel® iSBC 80/10A. Readers who are familiar
with the iSBC 80/10A may choose to skip to the
applications section, which describes the following
typical iSBC 80/IOA applications:

• The iSBC 80/10A used for instrumentation
control of a Fluke 8375 Digital Multimeter.

• The iSBC 80/10A used as a SCADA Terminal
in a communication application.

• The iSBC 80/l0A used for temperature moni­
toring in a process control application.

• The iSBC 80/1 OA used as an interrupt driven
device controller for a Centronics printer.

TTY

Each example shows the user program and hard­
ware required for the application. The program
listings are interspersed with the text describing
the application. Both 8080 Macro Assembly
Language and Intel's PL/M-80 are used in the
examples.

The software was developed on an Intel® Micro­
computer Development System (MDS). The MDS
provided the tools necessary to edit, assemble or
compile, link and locate the application software.
Hardware development was facilitated by the use
of Intel's In-Circuit Emulator (ICE 80). For further
information regarding the Microcomputer Develop­
ment System, the reader is referred to the publica­
tions listed at the beginning of this application
note.

OVERVIEW

The iSBC 80/IOA is a member of Intel's complete
line of OEM computer systems which take full
advantage of Intel's LSI technology to provide
economical, self-contained computer based solu­
tions for OEM applications. The iSBC 80/ I OA is a
complete computer system on a single 6.75-by-12
inch printed circuit card. A block diagram of the
iSBC 80/10A is shown in Figure 1.

Intel's powerful 8-bit n-channel MOS 8080A CPU,
fabricated on a single LSI chip, is the central pro­
cessor for the iSBC 80/1 OA. The 8080A contains
six 8-bit general purpose registers and an accumu­
lator. The six general purpose registers may be
addressed individually or in pairs, providing both
single and double precision operators.

1
INTERRUPT

REQUEST
LINE

USER DESIGNATED
PERIPHERALS

D

seC·BonDA

ADDRESS BUS SYSTEM

DATA BUS I aDS MEMORY

CONTROL BUS ~~c?
EXPANSION

1. Interrupts originating from the Programmable Communications Interface and Programmable Peripheral Interface are jumper selectable.

Figure 1. iSBC 80/10A Block Diagram

1-5

The 8080A has a 16-bit program counter which
allows direct addressing of up to 64K bytes of
memory. An external stack, located within any
portion of read/write memory, may be used as a
last in/first out stack to store the contents of the
program counter, flags, accumulator and all of the
six general purpose registers. A l6-bit stack pointer
addresses the external stack. This provides sub­
routine nesting that is bounded only by memory
size.

The iSBC 80/1 OA contains 1 K bytes of read/
write memory using Intel's low power static RAM.
All on board RAM read and write operations are
performed at maximum processor speed. Four
sockets for up to 8K bytes of non-volatile read­
only memory are provided on the board. Read­
only memory may be added in 1 K byte increments
(up to 4K total) using Intel® 8708 erasable and
electrically reprogrammable ROMs (EPROMs)
or Intel 8308 masked ROMs. Optionally, if more
than 4K bytes are required, read only memory may
be added in 2K byte increments (up to 8K total)
using Intel® 2716 EPROMs or 2316E masked
ROMs. All on-board ROM or EPROM read opera­
tions are performed at maximum processor speed.

The iSBC 80/10A contains 48 programmable para­
llel I/O lines implemented using two Intel® 8255
Programmable Peripheral Interfaces. The system
software is used to configure the I/O lines in any
combination of unidirectional input/output, and
bidirectional ports indicated in Table I. Therefore,
the I/O interface may be customized to meet
specific peripheral requirements. To support the
large number of possible I/O configurations,
sockets are provided for interchangeable I/O line
drivers and terminators. Hence, the I/O interface

provides the appropriate combination of optional
line drivers and terminators to allow the required
sink current, polarity, and drive/termination
characteristics for each application. The 48 pro­
grammable I/O lines and signal ground lines are
brought out to two 50-pin edge connectors that
mate with flat, round, or woven cable.

A programmable communications interface using
Intel's 8251 Universal Synchronous/Asynchronous
Receiver/Transmitter (USART) is contained on the
iSBC 80/IOA. A jumper selectable baud rate
generator provides the 8251 with all common
communication frequencies. The 8251 can be pro­
grammed by the user's system software to select
the desired asynchronous or synchronous serial
data transmission technique (including IBM Bi­
sync). The mode of operation (synchronous or
asynchronous), data format, control character
format, parity, and asynchronous transmission
rate are all under program control. The 8251 pro­
vides full duplex, double buffered transmission and
receive capability. Parity, overrun, and framing
error detection circuits are all incorporated in the
8251. The inclusion of jumper selectable TTY or
EIA RS232C compatible interfaces on the board,
in conjunction with the 8251, provide a direct
interface to teletypes, CRTs, asynchronous and
synchronous modems, and other RS232C com­
patible devices. The RS232C or TTY command
lines, serial data lines, and signal ground lines are
brought out to a 25-pin edge connector that mates
With RS232C compatible flat, round, or woven
cable.

Interrupt requests may originate from six sources.
Two from the 8255's, two from the 8251 and two
from user designated peripheral devices.

TABLE 1 INPUT/OUTPUT PORT MODES OF OPERATION

MODE OF OPERATION
UNIDIRECTIONAL

PORT NO. OF LINES INPUT OUTPUT BIDIRECTIONAL CONTROL
LATCHED & LATCHED &

UNLATCHED STROBED LATCHED STROBED

1 8 X X X X X
2 8 X X X X
3 8 X X Xl
4 8 X X
5 8 X X
6 4 X X

4 X X

1. Note: Port 3 mUlt be used as 8 control port when either Port 1 or Port 2 are used as a latched and strobed Input or a latched and
strobed output or Port 1 is used as a bidirectional port.

1-6

The 8255's can generate interrupts when a byte of
information is ready to be transferred to the CPU
(Le., input buffer full) or a byte of information has
been transferred to a peripheral device (Le., output
buffer is empty).

The 8251 can generate interrupts when a character
is ready to be transferred to the CPU (Le., receive
channel buffer is full) or a character is ready to be
transmitted (Le., transmit channel data buffer is
empty).

The user designated peripheral devices can generate
two interrupts: one via the system bus and the
other via the I/O edge connector.

The two interrupts from the 8255's and the two
interrupts from the 8251 are all individually mask­
able under program control. The six interrupt
req uest lines share a single CPU in terru pt level.
When an interrupt request is recognized, a RE­
START 7 instruction is generated. The processor
responds by suspending program execution and
making a subroutine call to a user defined interrupt
service routine originating at location 38 (Hexa­
decimal).

iSBC 80/1 OA memory and I/O capacity may be
increased by adding standard Intel memory and
I/O boards. Modular expandable backplanes and
card cages, each with a four-board capacity, are
available to support multi-board systems.

The development cycle of iSBC 80/1 OA based
products may be significantly reduced using the
Intellec Microcomputer Development System. The
resident macro-assembler, PL/M-80 compiler, text
editor, and system monitor greatly simplify the
design, development, and debug of user designed
iSBC 80/1 OA system software. A diskette-based
system allows programs to be loaded, assembled,
edited, and executed faster than using conventional
paper tape, card, or cassette peripherals. A unique
In-Circuit Emulator (ICE 80) provides the capa­
bility of developing and debugging software
directly on the iSBC 80/1 OA.

iSBC CONFIGURATION OPTIONS

The iSBC 80/1 0 provides the user with a powerful
and flexible I/O capability for both parallel and
serial transfers. This section discusses the user
programmable and jumper-selectable options, and
bus interfacing.

SERIAL I/O OPTIONS

The serial I/O interface, using Intel's 8251 USART,
provides a serial data communications channel that
can be programmed to operate with most of the

1-7

current serial data transmission protocols. There
are three general areas of serial I/O options:

I. choice of interface type, RS232C or current
loop,

2. baud rate and program-selectable mode
options,

3. choice of an interrupt mechanism.

The user has the choice, through jumper connec­
tions, of configuring the serial I/O logic to present
either an RS232C or a 20 mA current loop inter­
face to an external device. If an RS232C interface
is used, the 8251 can assume the role of a "data
set" or a "data processing terminal". This enables
the serial interface to be connected to different
devices such as modems and computer terminals.

There are two factors which enter into the choice
of baud rate. They are the actual clock frequency
used to drive the transmit/receive clocks on the
8251 and the baud rate factor selected by a pro­
grammable mode instruction control word output
by the processor to the 8251. The baud rate factor
is used to effectively divide the 8251 transmit and
receive clocks by 1, 16 or 64. During normal oper­
ation a factor of 16 is selected for asynchronous
transmissions from 9.6K to 300 baud. A factor of
64 must be used to achieve a baud rate of 110. The
baud rate factor is only applicable to asynchronous
transmission, as all synchronous transmission is
done with an implied factor of one.

Before beginning serial I/O operations, the 8251
must be program-initialized to support the desired
mode of operation. The CPU initializes the 8251
by issuing a set of control bytes to the US ART
device. These control words specify:

• synchronous or asynchronous operation
• baud rate factor
• character length
• num bel' of stop bits
• even/odd parity
• parity/no parity

Refer to the iSBC 80/10 and iSBC 80/1 OA Single
Board Computer Hardware Reference Manual or
the "8251 Application Note" for details on the
control words used to direct the operation of the
8251.

The serial I/O logic can be configured with differ­
ent forms of interrupt request mechanisms. By
connecting a jumper, the user can allow the 8251 's
Receiver Ready output to generate an interrupt
request. The Receiver Ready output goes high
whenever the Receiver Enable bit of the command

word has been set and the 8251 contains a charac­
ter that is ready to be input to the CPU. The user
can also choose to have the 8251 's Transmitter
Ready or Transmitter Empty output activate the
interrupt request. The Transmitter Empty goes
high when the 8251 has no characters to transmit.
Transmitter Ready is high when the 8251 is ready
to accept a character from the CPU. Both Trans­
mitter Empty and Transmitter Ready are enabled
by setting the Transmit Enable bit of the command
word. Upon receiving an interrupt, the program
can determine the actual condition which is
responsible for the interrupt by reading the status
of the 8251 device.

PARALLEL I/O OPTIONS

The parallel I/O interface consists of six 8-bit I/O
ports implemented with two Intel 8255 Program­
mable Peripheral Interface devices. Eight lines
already have a bidirectional driver and termination
network permanently installed. The remaining 40
lines are uncommitted. Sockets are provided for
the installation of active driver networks or passive
termination networks as required to meet the
specific needs of the user system.

The primary considerations in determining how to
use each of the six I/O ports are:

I. choice of operating mode,

2. direction of data flow (input, output or
bidirectional),

3. selection of interrupt mechanism,

4. choice of driver/termination networks for
the port's data path.

Operating Modes. There are three basic operating
modes that can be selected by the system software.
The modes of operation will be described here in
general terms, leaving it to the reader to obtain
details from the iSBC 80/10 and iSBC 80/1 OA
Single Board Computer Hardware Reference
Manual or the "8255 Application Note."

Mode 0 is a basic input/output functional con­
figuration which provides simple input and out­
put operations. No "handshaking" is required,
data is simply written to or read from a specified
port. The outputs are latched and the inputs are
unlatched.

Mode I is a strobed input/output functional
configuration which provides a means for trans­
ferring I/O data to or from a specified port in
conjunction with strobes or handshaking signals.
The outputs are latched and are accompanied by

1-8

an output control line which indicates that the
processor has loaded the output port with a data
byte. The input data is latched when accompa­
nied by its externally operated control signal.

Mode 2 is a strobed bidirectional bus input/
output functional configuration which provides
a means for communicating with a peripheral
device or structure on a single 8-bit bus for both
transmitting and receiving data. Handshaking
signals are provided to maintain proper bus flow
discipline in a manner similar to mode 1.

Data Flow Direction. In addition to the choice of
operating mode, the user may also specify the
direction of data flow, input or output from the
8255's. At the time of RESET, the 8255's are
configured into the input mode until altered by a
control word directed to the control word register.
When an output mode control word is received,
all of the data bits are set to the low output state.

Interrupt Mechanism. When the 8255 is pro­
grammed to operate in mode I or mode 2, control
signals are provided that can be used as interrupt
request inputs to the CPU. The interrupt request
signals, generated from one of the ports (port C),
can be inhibited or enabled by setting or resetting
the associated interrupt enable flip-flop, using the
bit set/reset function of port C. This function
allows the programmer to mask the interrupts from
specific I/O devices without affecting any other
device in the interrupt structure.

Driver/Termination Networks. Depending on the
direction of data flow, the user will select the
appropriate TTL line drivers and Intel terminators
that are compatible with the I/O driver/terminator
sockets on the iSBC 80/IOA. The list of suitable
line drivers includes those with inverting, non­
inverting, and open collector characteristics.
There are two types of terminators: a 220-ohm/
330-ohm divider or a I K ohm pull-up.

BUS INTERFACING

The system bus interface logic consists of three
general groups of circuitry:

I. gates that accept the various bus control
signals, the interrupt request lines, and the
ready indications, and then apply these
signals to the CPU logic elements,

2. the system bus drivers,

3. the failsafe circuitry which generates an
acknowledgment during interrupt sequences
and during those cycles in which an ac-

knowledgment is not returned because a
non-existent device was inadvertently ad­
dressed.

Bus Interface Signals. The following paragraphs
describe portions of the system bus interfacing
logic relevant to interfacing a user device to the
iSBC 80/1 OA. (Note: Whenever a signal is active­
low, its mnemonic is followed by a slash; for
example, MRDC/ means that the level on that line
will be low when the memory read command
is true.)

BCLK/ - Bus clock; used to synchronize bus
control circuits on all master modules. BCLK/
has a frequency of 9.216 MHz. BCLK/ may
be slowed, stopped or single stepped, if
desired.

IN IT / - Initialization signal; resets the entire
system to a known internal state.

BPRN - Bus priority input signal; indicates to
the iSBC 80/l0A that a higher priority mas­
ter module is requesting use of the system
bus. BPRN suspends the processing activity
and drivers of the iSBC 80/1 OA until the sig­
nal goes low.

BUSY / - Bus busy signal; indicates that the bus
is currently in use. BUSY/prevents all other
master modules from gaining control of the
bus. BUSY/is driven by the HLDA/ output
from the iSBC 80/1 OA in response to a
BPRN input. It indicates that the bus is
available.

MRDC/ - Memory read command; indicates
that the address of a memory location has
been placed on the system address lines and
specifies that the contents of the addressed
location are to be read and placed on the sys­
tem data bus.

MWTC/ - Memory write command; indicates
that the address of a memory location has
been placed on the system address lines and
that a data word has been placed on the
system data bus. MWTC/ specifies that the
data word is to be written into the addressed
memory location.

IORC/ - I/O read command; indicates that the
address of an input port has been placed on
the system address bus and that the data at
that input port is to be read and placed on the
system data bus.

IOWC/ - I/O write command; indicates that the
address of an output port has been placed on
the system address bus and that the contents

1-9

of the system data bus are to be output to
the addressed port.

XACK/ - Transfer acknowledge signal; the
required response of an external memory
location or I/O port which indicates that the
specified read/write operation has been com­
pleted (that is, data has been placed on, or
accepted from, the system data bus lines).

AACK/ - An advance acknowledge, in response
to a memory read or write command, that
allows the memory to complete the specified
operation without requiring the CPU to wait.

CCLK/ - Constant clock; provides a clock signal
of constant frequency (9.216 MHz) for use by
optional memory and I/O expansion boards.
The same signal is used to drive both CCLK/
and BCLK/.

INTRI/ - Externally generated interrupt re­
quest.

ADRO/-ADRF/ - 16 Address lines; used to
transmit the address of the memory location
or I/O port to be accessed. ADRF / is the most
significant bit.

DATO/-DAT7/ - Bidirectional data lines; used
to transmit/receive information to/from a
memory location or I/O port. DAT7/ is the
most significant bit.

Bus Acknowledges. Further distinction between
transfer acknowledge (XACK/) and advance
acknowledge (AACK/) is required. All external
memory and I/O transfer requests must return
XACK/ to the iSBC 80/l0A (even if AACK/ is also
returned). XACK/ indicates that data has been
placed on (read command) or accepted from (write
command) the system data bus lines. AACK/ is an
advance acknowledge in response to a memory or
I/O port command. It has been provided because
the 8080A samples the ready line before valid data
is required on the bus. If this condition is properly
anticipated, AACK/ can be returned before the
data is actually read, thus allowing an earlier opera­
tion to be completed. AACK/ should be used only
with a thorough understanding of the additional
information provided in the iSBC 80/10 and
iSBC 80/1 OA Single Board Computer Hardware
Reference Manual. DMA Transfers. An external
device can make DMA transfers to or from RAM
expansion boards. The transfer is coordinated
with the iSBC 80/1 OA by means of two bus
signals: bus priority input (BPRN) and bus busy
(BUSY I). The first step in making a DMA transfer
is to obtain control of the system bus. This is

achieved by asserting BRPN to the iSBC 80/1 OA
and then waiting until the iSBC 80/1 OA returns
BUSY /, indicating that it has relinquished control
of the system bus. When this step is completed the
external device may proceed with its DMA trans­
fers until it is finished. At that time BPRN should
be removed to allow the iSBC 80/1 OA to regain
control of the system bus. It should be noted
that the iSBC 80/1 OA is placed in a hold state
when it does not have control of the system
bus.

APPLICATIONS

The iSBC 80/1 OA may be applied to a wide variety
of applications. Specific applications in four areas
are presented in this application note. They are
presented to illustrate a broad spectrum of single
board computer capabilities ahd to demonstrate
the use of various system features.

INSTRUMEN,TATION

Microprocessors have been used in instrumentation
for many tasks ranging from handling simple inter­
face functions to control of the analog to digital
conversion process. The use of a single board com­
puter can further serve in the application of
instruments themselves to laboratory or process
control environments. It is qui,te often necessary in
these applications to control instrumentation
remotely. A number of rather expensive minicom­
puter-controlled solutions now exist on the market
as automatic test equipment (ATE) systems. The
iSBC 80/! OA presents itself as a cost effective solu­
tion in situations where the larger ATE systems are
beyond economic justification.

The iSBC 80/l0A can be the sale CPU element
in the system, providing instrumentation control
and computational capability; or it can supple­
ment a larger host CPU by handling distributed
processing requirements.

Instrumentation Control Application Example

Most instruments such as DVMs, counters, data
loggers, synthesizers, etc., have optional data out­
put units (DO Us) and/or remote control units
(RCUs). It is particularly time consuming to inter­
face each instrument's DOU/RCU with custom­
digital logic. Until the recent IEEE-488 interface
standard, there was little in common from one
interface to the next. The parallel I/O lines of the
iSBC 80/1 OA provide a common interface element
that can be adapted to a majority of the DOUs and
RCUs available today by means of software.

HO

FLUKE 8375

DOU

DATA

DIGIT
SElECT

CONTROL

Figure 2. Interface Block Diagram

iSBC B0/10A

This instrumentation control application shows
how the iSBC 80/1 OA has been used to control and
read the data from the data output unit (DOU) of
a Fluke 8375 Digital Multimeter.

Interfacing the iSBC 80/1 OA to the Fluke 8375
DOU has been accomplished through the use of
three parallel I/O ports shown in Figure 2. An 8-bit
port has been used to read input data from the
Fluke 8375 DOU. Another 8-bit port has been
used to control the multiplexing of data from the
DOU to the iSBC 80/1 OA. And, an 8-bit port has
been used to provide the required control and
monitoring of the following DOU functions:
busy flag, sample sync flag, timeout enable, exter­
nal trigger and trigger inhibit.
The following listing contains a complete program
to provide the necessary interface control func­
tions as well as an exercise program. The program
listing is interspersed with text that is used to
clarify the elements of the program.

o ;
1; INSTRUMENTATION CONTROL APPLICATION
2 ;
3 j fLUKE 8375 DIGITAL MULTIMETER
4 ;
5; DATA OUTPUT UNIT (DOU) CONTROLLER
6 ;
7 ;
8

The CSEG directs the ISIS-II 8080· Assembler to
generate a relocatable code segment. Relocatable
code can later be placed at any memory address by
Intel's LOCATE program. This lets you write your
program without worrying about the application's
final memory configuration.

9
10;
l' CSEG
12 ;
13

Equate Table. The following table is used to give
symbolic names to the binary I/O port addresses.
The names used later in the program increase
readability.

14
15 ;
16; EQUAr& TABL.E
17 ;
18 CWR EQU OEBH
19 DATIN EQU OE8H
20 STS EQU QE9H
21 FL.G EQU \.lEAH
22 TRG EQU OEAH
23 ;
2~

i 8255 iJ2 COt.1TROL \olORD REGISTER
; DECADE PAIR DATA INPUT PORr
; STR08E OUTPUT PORT
i FLAG INPUT PORT
i TRIGGER OUTPUT PORT

The exercise program uses some of the subroutines
provided in the iSBC 80/l0A System Monitor
PROMs. The addresses of the subroutines are
included in the equate table.

25
2& ;
27 GETC. EOO
28 co EQU
29 CROUT EQU
30 "MOUT EQU
3' ;
32

0220H j OgJ' CONSOLE INPUT I MASK OFF PARlT'i
01 EI!H ; CONSOLE OUTPUT
01F3H i PRINT <CR><LF>
02CZH ; DISPLAY BYTE IN ACCUM

The use of the iSBC 80/l0A parallel I/O ports
requires that the mode of operation be defined for
each port. This is typically done by an initializa­
tion subroutine executed when the iSBC 80/IOA
is powered up or reset.

8255 Control Word. When the opcode field (bit 7)
of a control word directed to an 8255 is equal to
one, the control word is interpreted as a mode
definition control word. The mode definition
control word format is shown below:

CONTROL WORD

10,1 D. 051 0,1 031021 0, 100 I
-,- L / GROUPS "-

PORT C (LOWER - PC3-PCO)
1'" INPUT
0" OUTPUT

PORT B
''"INPUT
0" OUTPUT

MODE SELECTION
O"MODEO
, = MoeE 1

/ GROUPA " PORT C (UPPER - PC7-PC4)
1 = INPUT
a-OUTPUT

PORT A
1 = INPUT
0= OUTPUT

MODE SELECTION
OO=MODEQ
01 = MODE 1
lX = MODE 2

/ OPCODE "-, MODE SET

1-11

Observing the schematic for the iSBC 80/ I OA -
Fluke 8375 DOU (Figure 3), it can be seen that the
8255 #2 should be configured through the use of
the mode control word as:

Port 4 (A)
Port 5 (B)
Port 6 (C)
Port 6 (C)

Mode 0 Input
Mode 0 Output
Bits PC2-PCO Output
Bits PC5-PC4 Input

The following mode control word is used:

101 10• 051 0'1 031 021 0,1 00 I
-e- Ii Port C Bits PCO-PC2 Output = 0

Port B Output = 0

Port B Mode 0 = 0

Port C Bits PC4-PCS Input = 1

Port A Input c 1

Port A Mode = 00

Opcode Mode Set = 1

Mode Control Word = 1001 1000 Binary = 98H

33
3~ ;
35 ; ... 8255 #2 INITIALIZATION SUBROUTINE
3& ;
37 INIi:
313 MVI A,100110008 .; LD MODE CONTROL WORD
39 OUT C~R i OUTPUT TO 8255112 eNTL WD REG
~O ;
~,

This coding loads the mode control word into the
8255 #2 control word register. Additional initial­
ization code is required to set the strobe and
trigger output ports to an inactive state. The sche­
matic shows that inverting drivers have been used
for both the strobes and the trigger. When a com­
mand is issued to place port 5 (B) into the output
mode, bits PB7 -PBO are set to the low output
state. Because the low outputs are then inverted
and used as strobes to the Fluke 8375, they must
then be disabled. The initialization subroutine
concludes by disabling the strobes and trigger. The
strobes are signals to the DOU which enable its
drivers to send data to the iSBC 80/l0A. The trig­
ger is a signal to the DOU that the Fluke 8375
should take a reading.

MVI A,OFFH
OUT STB
OUT TRG
RET

i LD MASK TO:
i DISABLE STROBES
i DISABLE TRIGGER

External Trigger Control. Two subroutines are
implemented to enable and disable the external
trigger mode of the instrument. These subroutines
use the bit set/reset capability of the 8255 to inde­
pendently set or reset three control lines of the
Fluke 8375 DOU.

When the opcode field (bit 7) of an 8255 control
word equals zero, the control word is a port 6 (C)
bit set/reset command word.

The bit set/reset control word format is shown
below:

CONTROL WORD

NOT USED SET TO 000

BIT 0
BIT 1
BIT 2
BIT 3
BIT4
BIT 5
BIT6
BIT7

The following example demonstrates how the port
6 (C) bit set/reset control word is constructed to
disable the Fluke 8375 external trigger. Note from
the schematic (Figure 3) that port 6 (C) bit 0 con­
trols the inhibit external trigger line.

Set Bit =,

Bit Select = 000 (Binary)

Not Used ~ 000 !Binaryl

Bit Set/Reset Opcode '" 0

The control word for set Port C bit 0 is 0000 0001 Binary .. 01 H

50
51 ;
52 ; ... ENAaLE EXTERNAL TRIGGER SlJBHOUTINE ...
53 ;
54 ETRIG:
55 MVI A,OOOOOOOOB ; LD RESe;r BIT 0 CONTROL ~OAD
56 OUT CwR ; OUTPUT TO 8255#2 CNTL WD REG
57 RET
5d j

59 ; ••• DISABLE EXTERNAL TRIGGER SUBROUTINE •••
60 ;
61 DTRIG:
62 MVI A,OOOOOOO1B i LD SET BIT 0 CONTROL WORD
63 OUT CWR ; OUTPUT TO 825512 CNTL flO REG
64 RET
65 ;
66

Subroutines to enable and disable the timeouts are
written in an analogous fashion. The timeout
enable line is controlled by port 6 (C) bit 2.

67
68 ;
69 ; ... ENABLE TIMEOUTS SUBROUTINE
70 ;
11 EPOS:
72 MVI A,00000101B ; LD SET BIT 2 CONTROL WORD
73 OUT CwR ; OUTPUT TO 825512 CNTL WD REG
74 RET
75 ;
76 j ... DISABLE TIMEOUTS SUBROUTINE ...
77;
78 opos:

1·12

79
do
81
d2 ;
d3

MVI A,00000100B
OUT C'IlR
REr

; LD RESET BIT 2 CONTROL wORD
; OUTPUT TO 8255112 CNTL WD RSG

Obtaining Readings. The Fluke 8375 DOU allows
readings to be taken in one of two modes. The
first, a triggered mode, assumes that the external
triggering has not been inhibited and requires the
positive edge of a pulse with a minimum width of
I microsecond on the trigger input. Setting and
resetting the port 6 (C) bit I produces the 8375
external trigger. After a reading is triggered the
8375 busy flag is tested until the not busy state is
reached. At that time the reading that was
triggered can be read by the iSBC 80/1 OA. The
last statement in this routine jumps to TKDAT A
which reads the data from the DOU and then
executes the return.

84
85 ;
86 ; ... SUBROUTINE TO TAKE EXTERNALLY TRIGGERED READING ...
87 ;
88 TRGR:
89
90
91
92
93 NT:
94
95
96
97
98 ;
99

MVI
our
INR
our

I.
ANI
J"
JMP

A,OOOOOOlOB
OWR
A

C"'
FLO
001000008
rwr
.i'KDATA

; LD RESET BIT 1 CONTROL wORD
; OUTPUT TO 8255112 CNrL WD REG
; MODIfY CONTROL WORD TO SET BIT ,
; OUTPUT TO 8255112 CNTL WD REG

; INPUT THE BUSY FLAG
; TEST PORT C BIT 5
; LOOP UNTIL NOT BUSY
; GO READ DATA FROM OOU AND RETURN

The second method for reading the Fluke 8375 is
to rely on the sample rate set from the front panel
controls and to wait until a full transition of the
busy flag is observed. This guarantees that a previ­
ous reading is not mistakenly interpreted as a new
reading.

100
101 ;
102 ; ... SUBROUTINE TO OBTAIN NEXT READING ...
103 ;
104 NXTRD:
105
106
107
108 NXTlo/T:
109
110
111
112
113 ;
114

I.
ANI
JZ

I.
ANI
J.z
JMP

FLG
001000008
NXTRD

FLG
00100000B
'Xl'WT
TKDATA

i INPUT THE BUSY FLACi
; TEST PORT C BIT 5
; LOOP UNTIL BUSY WITH NEXT READING

; INPUT THE BUSY FLAG
; TEST PORT C BIT 5
; LOOP UNTIL NOT BUSY
i GO READ DATA FROM oem AND RETURN

Notice that the loops beginning at NXTWT in the
above program segment and at TWT in the previous
program segment are identical. This suggests the
possibility of some obvious code optimization that
is omitted here for the sake of clarity.

There is one subroutine remaining to complete full
utilization of the Fluke 8375 DOU capabilities. It
is the subroutine to take data from the 8375 DOU.
The schematic (Figure 3) shows that port 5 (B) bits
PB4-PBO are used to enable the DOU drivers. Data
from the DOU includes:

• 5 decades of digits
• encoded range and overrange

• function: Volts DC, Volts AC, Ohms, Kil-
ohms

• modifiers: Filter, Ext. Ref., Remote
• overload
• trigger

The function of this subroutine is to read five
bytes of data from the 8375 DOU and place them
in a RAM buffer on the iSBC 80/ lOA.

115
116 ;
117 ; H' SUBROUTINE TO TAKE DATA fROM 8375 DOll u,
118 ;
119 TKDATA:
120 LXI H,RDBUF' ; LD BUFFER POINTER
121 MVI A,OEFt-! ; SETUP FIRST STROBE
122 T!<O:
12J I"IOV B.A ; SAVE CURRENT STROBE
12" OUT STB ; STROBE DECADE PAIR
125 IN DATIN ; READ DATA
126 MOV M,A ; PLACE DATA INTO SBC 80/10 RAM
127 INX H : INCRF;ME~lT BLlFfER PortHER
128 t10V A,8 j RESTORE STROBE
129 RHe i HorAn: TO NEXT STROBE POSrrION
1JO Je TKO ; LOOP UNTIL BIT 0 STROBE DONE
1J1 OUT SIB ; DISABLE ALL STROBES
132 RET
133 ;
13"

This completes the software required to service the
Fluke 8375 DOU. The following code consists of a
routine to display the data from the interface on
the console output device and a short executive
program to allow exercising of the driver sub­
routines.
The display subroutine takes 5 bytes of data from
the RAM buffer in which the reading has been
stored and prints them, 2 ASCII characters per
8-bit byte, on the console.

135
136 ;
137 ; H. SUBROUTINE TO DISPLAY READING BUFfER ON CONSOLE ...
138 ;
139 DISI'LAY:
140 LXI
141 HVI
142 DISPO:
"3

'"" "5
,"6
"7
"8
'"9
ISO ;
151

MOV
CALL

INX
oce
JNZ
RET

H,RDBUF
0,5

A,M
NMOUT

n
o
DISPO

; LD BUfFE'! POINTER
; INITIALIZE COUNTER'

; LD NEXT BYTE fROM BUFFER
; CALL SBC 80/10 MONITOR SUBROUTINE
; TO DISPLAY ACCUMULATOR CONTENTS
; INCREMENT RUFFER POINTER
; DECREMENT COUNTER
; LOOP FOR 5 DISPLAY BYTES

Operator Interface. The short executive program
provides a tool for the purposes of exercising the
8375 DOU driver subroutines. The executive begins
by calling the initialization subroutine and then
continues on to prompt the operator with a '>' on
the console. At that point the operator may enter
one of the following characters, causing the pro­
gram to execute the specified subroutine:

SUBR DESCRIPTION

T ETRIG
I DTRIG
E EPOS
D DPOS
N NXTRD
S TRGR
X DISPLAY

Enable external trigger
Disables external trigger
Enable programmed timeouts
Disable programmed time outs
Next reading
Trigger and get a reading
Display reading buffer

1-13

After the operator has entered a command charac­
ter, the program obtains the address of the sub­
routine to be executed and proceeds to set up a
return address on the stack. This technique allows
a load program counter instruction (PCI-IL) to be
used to enter the subroutine and a return instruc­
tion (RET) to resume execution of the executive.

152
153 i
154 ; .11 SIMPLE EXECUTIVE EXEHCISE PROGRAM •••
155 ;
156 START:
157
158
159 EXEC:
160
161
162
163
16"
165
166
167
16d EXECO:
169
170
171
172
173
174
11~ EXEC1:
176
177
178
179
180
181
182
183
18"
185
186 ;
187

LXI
CALL

CALL
MVI
CALL
CALL
CALL
MOV
LXI
LXI

01P
,1Z
INX
OCR
JNZ
JMP

LXI
DAO
DAO
MOV
INX
MOV
MOV
LXI
PUSH
PCHL

SP,STACK
INIr

CHOUT
C ')'
CO
GETCH
CO
A,e
B,NCt,mS
H,CTAS

M
EXEC1
H
e
cXECO
EXEC

rl,CADR
B
B

'.M
H
H,M
L,A
D,EXEC
o

; SETUP STACK POINTER
; INITIALIZE THE SBC 80/10 8255112

; EXEC ENTRY POINT - PRINT (CR)(LD
; C LOADED WlTIi PROMPT CHARACTER
; CONSOLE OUTPUT
; GET CMND CHAR, MASK OFF PARITY
; PRINT THE CHARACTER ON THE CONSOLE
; PUT CHARACTER BACK INTO THE ACCIlM
; C CONTAINS LOOP AND INDEX COUNT
; HL POINTS TO CMND TABLE

; COMPARE TARLE ENTRY AND CHARACTER
; BRANCH If fQUAL - CMND RECOGNIZED
; ELSE, INCRFY.ENT TABLE POINTER
; DECREMENT LOOP COUNT
; BRANCH IF NOT AT TABLE END
; ELSE, CMND ILLEGAL - IGNORE IT

; LD ADR OF TABLE Of CMND SUBRS
; ADD WHAT IS LEfT Of LOOP COUNT
; - EACH ENTRY HI CADR IS 2 BYTES
; GET !...SP OF ADR Of TABLE ENTRY TO A
; POINT TO NXT BYTE IN TABLE
; GE:' MSP Of ADR Of TABLE ENTRY TO H
; PUT LSP OF ADR OF TABLE ENTRY TO L
; SETUP RETURN ADR ON THE STACK

; flEX! INSTR COMES fROM CMND SUBR

The command and address tables as well as the
reading buffer follow to complete the application
software.

188
189 i
190; COMMAND AND ADDRESS TABLES
191 ;
192 CfAB:
193 DB 'XSNDEIT'

194 flCMDS EOU
195 ;
196 CADR:
197
198
199
20D
201
202
203
20'
205 ;

:;i-CTAB

o
ETRIG
DTRIG
EPOS
OPOS
NXTRD
THGR
DISPLAY

; NUMBER OF VALID Ca1MANDS

206; READING BUFfErl AND STACK SPACE
201 ;
208 HDBllF':
209
210 ;
211
212
21J

os

END

; READING BLIFFER

START ; TRANSFER ADL'R::3S IS TO START

SUMMARY /CONCLUSIONS

This instrumentation control application has been
presented to demonstrate the simple techniques
used to apply the iSBC 80/1 OA to the task of inter­
facing instrumentation. A natural extension of this
example would include the control of the Fluke
8375 RCU, as weIl as the control of many addi­
tional instruments to build a small ATE system.

BUSY FLAG

SAMPLE SYNC
FLAG

TIMEOUTS
ENABLE

EXTERNAL
TRIGGER

EXTERNAL
TRIGGER

INHIBIT

OVERLOAD

TRIGGER

FILTER

REMOTE

VOL TS DC

VOLTS AC

OHMS

RANGE c "{
OVER

RANGE

d

m5T 1 DECAOE

" r SECONlJ

D,eADE , l
d

" 1
THfilO

DECADE c

d

" 1
FOURTH
D~CADE c

d

" 1
FIFTH

DECADE:

FLUKE 8375 DOU

IDATA OUTPUT UNITI

1281
e~

1231)

1221
e-

1231

"
1211

e-
12171

l=n 12131

-=n 12151

1222)

tp 1218)
--

12201 t:r)

tn (21(;)

"::::h l?ldi

1226)

'I) 126)

t:r) (2d)

=n (212)

:::::n (210)

(135)

(136)

l=n (133)

1=F) (1311

.. LR (132)

~
0341

(125)

-n (127)

'--D 1129)

'------~ =n (128)

>-=0 030)

(119)

L =n 11211

=n (123)

I-

=n (1221

=n (1241

11131

--=n (11,,1

'I) 11171

I
I-~

11161

1118) =n -~

115)

t::.:n Jr= 119;

t:n (111)

~-====sr=-t:n 11101

=n (112)

1111

bJ (13)

bJ 116)

f-n 1171

=n 1141

Figure 3. Interface Schematic

1-14

SBC80! 'OA

IJ229)

IJ227)

1J221)

IJ2231

1J225)

1J211)

(J23)

(J29)

IJ271

1J2S1

Vee

1K

iJ235)

IJ2J7I

1J23'l)

1J241J

IJ249)

IJ247)

1J245)

(J243)

Vcc ,1' 1---- --,
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1K
I PORT61Ci

I UPPER

PCS

I
PC,

A10 I :;'7 I PC, ::: I
PCl P~~~~~C)

::f I
PCO,-

I
I
I
I
I
I
I
I ,
I

I

8255
GROUP2

All. A21

7~7

...... ~ I
PS,

I PORT 5(B)

... I
........ I PB3

I

<H- '"'
I
I

<l>- t- PA,

I

-4-~ PBO

A,

1

A,

~

I
I
I
I

PA,

I PORT4(AI

I
PAS

PAS

I
PA4

I
I
I
I
I PA3

i
PA,

PA,

I
I PAD

L _____

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

.J

COMMUNICATION

A diverse range of single board computer applica­
tions exists in the field of communication. The
increase in distributed processing generates require­
ments for self-contained computers to control
elements of a communication system, increasing
both the throughput and reliability.

There are many situations that necessitate monitor­
ing and controlling a system from a remote site.
Typical examples are systems that cover large geo­
graphic areas or systems in dangerous environments
for human operators. If the object system, which
provides the actual parallel inputs and outputs to
the plant, is far from the controlling system, you
can lower costs by reducing the number of inter­
connecting wires via the addition of multiplexers
to both systems. In the extreme (and often desira­
ble) case of reducing the interconnects to an
absolute minimum, all communication between the
systems takes place on a single serial data link. If
large distances are involved, this link can be stand­
ard telephone wires. For moderate distances, the
link can be a single twisted pair. In either case, the
equipment used to interface the object system to
the serial link is called a supervisory control and
data acquisition (SCADA) terminal.

The decision to replace a multitude of intercon­
nects with a SCADA terminal is largely economic.
Cables and their associated drivers and receivers
can represent a significant part of the total cost of
a factory automation project, particularly if an
electrically noisy environment requires the use of
shielded cables. Any potential savings in cabling
must, of course, compensate for the additional cost
incurred by adding the SCADA terminal to the
system.

Communication Application Example

A SCADA terminal demonstrates an industrial com­
munication application of the iSBC 80/ lOA. The
Intel® 8251 USART provides the serial communi­
cation link and the two Intel 8255 Programmable
Parallel I/O devices provide 48 parallel lines for the
object system. A block diagram of a SCADA
terminal is shown in Figure 4.

The task of the software in this SCADA terminal
example is two-fold. First, it must continually scan
its parallel inputs, transmitting the status of those
lines in a bit serial mode using the USART. And
second, it receives bit serial data from the USART
which is to be used to update 'the parallel outputs.
Thus, a major portion of the software deals with

1-15

PARAllEL
OUTPUT

PARALLEL
INPUT

iSBC S0!10A

Figure 4. SCADA Terminal Block Diagram

SERIAL
INPUT

the communications protocol on the serial data
lines.

Communications Protocol. A communication pro­
tocol is an agreement between communications
users that defines the record formats used for data
transmissions. The protocol selected for this
SCADA terminal application provides the follow­
ing features:

I. A readable character set to simplify the
human interface.

2. Error detection by means of a checksum.

3. Each record specifies the number of data
bytes in the record and the initial port
number.

Despite its value for human interface, the ASCII
character set has problems representing 8-bit
binary values, since the high-order bit is not used.
Therefore, each binary value is treated as two 4-bit
hexadecimal values. Because hexadecimal numbers
fall in the range 0-9 and A-F, they can be repre­
sented as ASCII characters. However, this repre­
sentation requires twice as many bytes as a pure
binary format.

Record Format. The information encoded into the
ASCII hexadecimal format is grouped to form
records. Each record has a record mark to flag the
beginning of the record, a number of ports specifi­
fication (record length), destination output start
port number, the data field itself, and a checksum.

The record format described below is according to
the fields in the record.

Record mark field: Byte 0

The ASCII code for a colon (:) is used to signal
the start of a record.

Number of ports field: Byte I

The number of data bytes in the record is repre­
sented by a single ASCII hexadecimal digit in this
field. This corresponds to the number of 8-bit

ports to which data will be output by the
SCADA terminal in a parallel fashion. The maxi­
mum number of data bytes in a record is IS (F
in hexadecimal). A record length of zero is a
special case and can be reserved for control
information.

Port address field: Byte 2

The single ASCII hexadecimal digit in byte 2
gives the port number of the initial output port.
The first data byte is output to the port indi­
cated by the port address; successive bytes are
output in successive port locations on the iSBC
80/1 OA or on expansion I/O boards.

Data field: Bytes 3 to 3+2*(number of ports}-I

An 8-bit binary value is represented by two
bytes containing the ASCII characters 0-9 or
A-F, which represent a hexadecimal value
between 0 and FF (0 and 255 decimal). The
high-order digit is in the first byte of each pair.

Checksum field: Bytes 3+2*(number of ports} to
3+2*(number ofports}+1

The checksum field contains the ASCII hexa­
decimal representation of the two's complement
of the 8-bit sum of the 8-bit bytes that result
from converting each pair of ASCII hexadecimal
digits to one byte of binary, from the number of
ports field (the number of ports and port ad­
dress constitute a pair) to and including the last
byte of the data field. Therefore, the sum of all
the ASCII pairs in a record after converting to
binary, from the number of ports field to and
including the checksum field, is zero.

Sample Hexadecimal format:

:303A178FFO

~~I LCh"',,mField

~OataFleld
Starting Port Address

Number of Ports

Record Mark

Design Approach Using a State Diagram. Before
proceeding to examine the software used to imple­
ment the SCADA terminal, consider how the prob­
lem might have been approached with TTL logic
rather than a microcomputer. The design would
likely have been formulated with a state diagram to
specify the transitions of a sequential state ma­
chine. The sequential-circuit operations would
include decoding the serial input records and

1·16

encoding the serial output records. An examination
of the serial input record state diagram (Figure 5)
is useful in understanding some of the procedures
encountered later.

IN IT

HAC

Figure 5. State Diagram

Notes: HAC = Hexadecimal ASCII character
LHAC = Last Hexadecimal ASCII character
PO Parallel output

The receipt of an invalid HAC will cause a return
to state O.

The receipt of a colon at any time will produce a
transition to state I.

STATE DESCRIPTION

o record mark state
I number of ports state
2 start port number state
3 high-order half of data byte state
4 low-order half of data byte state

State 0 is entered at the time of initialization. All
state transitions occur when the next character is
received. States I, 2, and 3 are entered with the
input of a colon (:), the number of ports and start
port number, respectively. States 3 and 4 will cycle
as required until all the high and low-order pairs of
data have been input. The transition from state 4
to state 0 occurs when the last data byte has been
received. If the checksum is correct, the parallel
output latches are loaded with the data field of
the record.

There are many references to the states contained
in this diagram during the discussion of the soft­
ware procedures. Thus, the state diagram is used as
a "flowchart" for the software. As in the other
examples in this application note, a textual descrip­
tion accompanies each segment of code. Intel's
high-level programming language, PL/M-80, has
been used to show the capability to program in a
natural, algorithmic language which eliminates the
need to manage register usage or memory alloca­
tion.

SCADA Terminal Program. The program begins
with a comment, that is followed by the program
segment label "SCADA". With resident PL/M-80,
all programs are considered to be labelled blocks,
or modules. This means that all PL/M programs
must begin with a LABEL and a DO statement and
end with an END statement.

/'
INDUSTRIAL CCtlt1UNICATION APPLICATION

SCADA TERMINAL
'/

SCADA:

DO;

All variables used in the program must be declared
before they can be referred to by their identifiers.
This is done by means of a DECLARE statement.
In addition to the declaration of variables, macros
are declared using the reserved word LITERALLY.
These macros are expanded at compile time by
textual substitution.

2 1 DECLARE
SRLINSTATE BYTE,
SRL$INtPRT BYTE,
SRLINCNT BYTE,
PRLINSTATE BYTE,
PRLINSTRTSPRT BYTE,
PRLINNHB$PRTS BYTE,
SRLINPRLOUTBFR(3) BYTE,

PRLOUTPRT$O LITERALLY I OE5H I I

PRL$OllT$PRT$l LITERALLY 'DEAH',
PRLOUTPRT$2 LITERALLY 'DE8H',

SRLOUTSTATE BYTE,
SRLOUTPRT BYTE,
SRLOUTCNT BYTE,
PRLOUTSTATE BYTE,
PRLOUTSTRT$PRT BYTE,
PRLOUTNHB$PRTS BYTE,
SRLOUTPRLINBFR(4) B'iTE,

PRLINPRT$O LITERALLY • OE4H' •
PRLINPRT$l LITERALLY 'OE6H'.
PRLINPRT$2 LITERALLY I QE9H I •

USART$CMD LITERALLY 'OWH',
USART$IN LITERALLY 'OECH'.
USART$OUT LITERALLY • OECH I •

USART$STATUS LITERALLY 'OEDH',
USART$HODE$INSTR LITERALLY 'OCFH'.
USARTCHDINSTR LITERALLY '025H'.

TXRDY LITERALLY 'OOlH'.
RXRDY LITERALLY '002H',

PPICWR1 LITERALLY 'OE1H',
PPICWR2 LITERALLy 'OEBH'.
PPICWO1 LITERALLY 'OSOH',
PPICWO2 LITERALLY '09BH'.

THUE LITERALLY 'OFFH'.
fALSE LITERALLY 'OOOH'.

FOREVER LITERALLY 'W'HILE TRUE' •

NEXT$BYTE BYTE,
CHECKSUM BYTEi

8251 and 8255 Initialization. The INIT procedure
sets up the 825 I and 8255's and initializes several
variables. Interrupts are disabled to insure that no
interrupts are serviced during the execution of the
INIT procedure.

3 1 INIT: PROCEDUREi

q 2 DISABLEi

1·17

The serial input and serial output state counters are
set to state O. Port number 0 is the parallel input
start port and 3 ports of data are input from the
parallel ports for serial transmission.

SRLINSTATE = 0i
SRLOUTSTATE = OJ
PRLINSTRT$PRT = OJ
PRLINNHB$PRTS = 3 i

The Intel 825 I USART must be set up by loading
it with mode and command instructions.

The mode instruction format is shown below:

-~LM""Mn.-00 "'SVN MODE
r 01 "ASYNX1

1 0 ASVNX16
11 .. ASVN X64

CHARACTER LENGTH

OO--SBITS
01 ... 6 BITS
10"'7BITS
11 -"8 BITS

PARITV CONTROL

X 0 NO PARITV
01 .. ODD PARITV
1 1 ... EVEN PARITV

FRAMING CONTROL

>_N_O_-_A_SV_N_IO-,':...O..:.O_*_O °_' ___ 1 g ~ : ~~fci,A~~
1 0 .. 1% STOP BITS
11 ,.. 2 STOP BITS

SVN CONTROL

L-----------~I ~~ ~~~EERR~~~SS~~
o X DOUBLE SVN CHAR
1 X SINGLE SVN CHAR

The 825 I characteristics required by this SCADA
terminal application include 9600 baud transmis­
sion and 8-bit characters. The parallel inputs of the
8255's are periodically scanned. The scanning
frequency is determined by the baud rate and
number of ports of data being transmitted. For
example, the transmission of 3 ports of data
requires 11 characters. At a baud rate of 9600 the
approximate scan rate is 100 Hz.

The following 825 I mode instruction is used:

I ~Il-~ ~.-.-.~" L- Character Leng,th '" 11

Parity Control = 00

Framing Control" 11

Instruction'" 1100 1110 Binary" CEH

After the mode instruction is sent to the 8251, a
command instruction is required to complete the
8251 initialization.

The command instruction format is shown below:

"TRANSMIT ENABLE
1- ENABLE
0- DISABLE

DATA TERMINAL
READV

"HIGH" WILL FORCE
oTR OUTPUT TO ZERO

RECEIVE ENABLE
'---~.I 1 '" ENABLE RxRDY

O. DISABLE RxRDY

SEND BREAK

'-------� CH1A=R~8~~~s TxO "LOW"
0'" NORMAL OPERATION

eRROR RESET '-______ -1 ,., RESET ALL ERROR

FLAGS IPE. DE. FE)

REQUEST TO SEND

'----------~I ~G~~~i~g~~~o

INTERNAL RESET
"HIGH" RETURNS 8251
TO MODE INSTRUCTION
FORMAT

~NTER HUNT MODE '--___ '--_________ 1 1'" ENABLE SEARCH FOR

SVN CHARACTERS

The command instruction enables the transmit and
receive functions of the 8251.

The following command instruction is used:

Transmit Enable = 1

Data Terminal Ready:: 0

'---- Receive Enable = 1

III '----- Send Break Character" 0

Error Reset .. 0 '--_____ ::~::: ::n~;'

L. _________ EnterHuntMode=O

Instruction = 0010 0101 Binarv '" 25H

Output instructions send the initialization com­
mands to the 8251. Note that previously declared
macros are used to literally replace the mnemonics
in the following lines of code.

9
'0

OUTPUT(USART$CMD) • USARl'$I4ODE$I.STR,
OUTPUT(USAIIT$CHD) : USART$Ci'lD$INSTR;

1·18

Initialization of the 8255's is then done to set up
the following configurations:

8255 #1

Port 1 (A)
Port 2 (B)
Port 3 (C)

8255 #2

Port 4 (A)
Port 5 (B)
Port 6 (C)

Mode 0
Mode 0
Mode 0

Mode 0
Mode 0
Mode 0

Output
Output
Output

Input
Input
Input

The following command instruction is used for the
8255 #1:

10'1 06 051 041 0,1 0,1 0, 100 I

I'
Port C Bits pea-PCa Output

Port B Output = a

-0

Port 8 Mode 0 .. 0

Port C Bits PC7-PC4 Output -0

Port A Output'" 0

Port A Mode = 00

Opcode Mode Set = 1

Mode Control Word = 1000 0000 Bfnarv .. SOH

The following command instmction is used for the
8255 #2:

I 0'1 061 051 041 0'1 021 0, I DO I - II Port C Bits PC3-Pta Input

Port B Input = 1

.,

flort B Mode 0 '" 0

Port C Bits PC7-PC4 Input ..

Port A Input-1

Port A Mode'" 00

Opcode Mode Set '" ,

Mode Control Word = 10011011 Binarv = 9BH

The 8255 initialization commands are given in a
similar manner to the 8251 commands,

" OUTPUT(PPI,CW',,) • PPI.e'D$"
'2 OUTPUT(PPI$CW"2) • PPI$CW0$2,

The INIT procedure concludes by enabling inter­
rupts.

'3 2 EHABLE,

'4 2 EHD INlT;

Conversion Procedures. Two conversion procedures
are required in the program. The first procedure
produces a hexadecimal ASCII character from a
4-bit binary value. A typed procedure has been
used which returns a value of the type byte. It is
called by using its name in an expression.

15 1 CHAR$CONV: PROCEDURE (CIiAR) BYTE:

16 2 DECLARE CHAR BYTE:

17
18
19
20

CHAR:; CHAR ~ '0';
IF' CHAR> '9' THEN

CHAR;; CHAR + 7:
RETURN CHAR;

21 2 END CHAR$CONV;

The second procedure produces a 4-bit binary
value from a hexadecimal ASCII character. Because
this procedure is used only when a hexadecimal
ASCII character is expected, an illegal character
(i.e., not a 0-9 or A-F) causes the serial input
state counter to indicate state O. This procedure is
also typed. The NMB$CONV procedure emphatic­
ally illustrates the point that PL/M-80 performs
unsigned arithmetic. Note that when the ASCII
value for a zero is subtracted from the digit,
NUM = NUM - '0'; a positive number is always
produced, even if the value of NUM is less than '0'.

22 1 NMB$CONV: PROCEDURE (NMB) BYTE;

23 2 DECLARE NMB BITE;

21j NHB=NKB4'O':
25 IF NMB > 9 THEN
26 00;
27 IF (HMB > 16) AND (NMB < 23) THEN
28 NMB:NMB-7;

ELSE
29 SRLINSTATE :; 0;
30 END;
31 RETURN NKBj

32 2 END NMB$CONV j

Parallel Input Procedure. A parallel input proce­
dure is used to input data bytes from the 8255's.
The data bytes are then transmitted by the bit
serial output device. This procedure also computes
the checksum for the serial output record. The
checksum, TEMP2, is initialized to contain the
parallel input number of ports and the start port,
shifted to fit within a single byte. Each cycle of the
iterative DO block adds the next data byte to the
checksum and places the input data into the
SRLOUTPRLINBFR array until the loop is
complete. The checksum is then computed as the
two's complement of the accumulated sum and
also stored in the serial input parallel output
buffer.

1·19

33 1 PARALLEL$IN: PROCEDURE;

311 2 DECLARE (TEMP1, TEHP2) BYTE;

35 2 TEMP2 :: PRLINNHB$PRfS * 16 + PRl.$IN$STRT$PRT;

36 2 DO PHLINSTATE :: PRLINSTRT.$PRT TO
PRLINSfRT$PRT + PRL$lNNMBPRTS - 1;

TI 3 00 CASt: PRLINSTAT£;

If PRL IN PRT 0 *1
311 4 TEMPl = INPUT(PHLHIPt1T$O);

1* PRL IN PHT 1 *1
39 4 ri:::I'1Pl = INPUT(PRLltJPRT$ 1} ;

I" PRL IN PHT 2 "1
40 4 TEMPl = INPUT(PRL$INJ;PRT$2);

41 Ii END;

42
43

.')RLOUTPRLINBFR(PRLINSTATE) = TEKP1;
TEKP2 .; TEKP2 ... TEMP';

44 3 END;

1.j5 2 SRLOUTP~LINBFR(PRLINSTRT$PRr ... PRL$INNMBPRTS) = -TEMP2;

46 2 END PARALLEL$IN;

Parallel Output Procedure. When a complete serial
input record has been received and the checksum is
correct, the transition from state 4 to state 0 is
accompanied by the parallel output of the data
from the data field of the serial input record. The
parallel output starting port and the number of
ports of data is contained in the input record and
is thus used in directing the parallel output opera­
tion. An iterative DO block increments the
PRLOUTST ATE index variable through the
required ports and a DO CASE block selectively
executes one of the OUTPUT statements for each
cycle of the loop.

4)

4d 2

49 2

50 3

51

52 4

53 4

PARALLEL$OUT: PROCEDURE;

D£CLAI1E TEMP BnE;

00 PRLOUTSTATE = PRLOUTSTI1T$PRT ro
PnLOUTSTI1T$PI1T ... PRL$OUTNMBPRTS _ 1;

Tf..MP = SRLINPRLOUTBfR(PRLOUTSTATS};

DO CASE PI1LOUTSTATE;

II: PRL OUT PRT 0 *1
OUfPUT(PRLOUTPI1T$O) = TEMP;

II: PRL OUT PRT 1 1:1
OUTPUT(PRLOUTPRT$l) = TEMP;

II: PRL QUT PRT 2 "I
54 4 OUTPUT(PRL$OllT$PRT$2) = TEMP;

55 END;
56 END;

57 2 EUD PARALLEL$OUT;

Serial Input and Output Procedures. The next two
procedures contain the software implementations
of the state diagram described previously. The
processing during each state of the first procedure,
the serial character input procedure, is described
in the following text.

The procedure begins by reading a character from
the 8251 and then converts the character into a
4-bit binary value using the number conversion
procedure. The DO CASE block is the mechanism
by which a program segment is selected to examine

the input character, provide the required outputs,
and to specify the transition to the next state.

58 SERIAL$CHAR$IN: PROCEDURE;

59 2 DECLARE (CHAR, TEMP) BYTE;

60 CHAR = INPUT(USART$IN) AND 07fHj
61 TEMP;; NttB$CONV(CHAR);

62 2 DO CASE SRLINSTATEj

State 0 is entered through the initialization proc­
ess, at the completion of the processing of a serial
input record, or when an invalid character has been
received. The serial input state will remain 0 until a
colon (:) is received, at which time a transition to
state I is specified.

63
64
65
66

/' SRL IN STATE 0 = RECORD MARK '/
00;

IF CHAR :;: ':' THEN
SRLINSTATE :;: 1;

END;

The parallel output number of ports is obtained,
the counter initialized, and a transition to state 2 is
specified from state I.

67
68
69
70
71

/* SRL IN STATE1:;: NHB PRTS '1
00;

PRLOUTNMB$PRTS :;: TEMP;
SRLINCNT :; TEMP;
SRLINSTATE :;: 2;

END;

In state 2 the parallel output starting port number
is obtained, the serial input port is initialized, the
checksum is set to contain the parallel output
number of ports and starting port, and a transition
to state 3 is specified.

72
73
74
75
76
77

1* SRL IN STATE 2 = STRT PRT ./
00;

PRLOUTSTRT$PRT :;: TEMP;
SRLINPRT = TEMP;
CHECK5LIM :;: PRLOUTNI'.a$PRTS*16 + PRL$OUT$STRT$PRTj
SRLINSTATE = 3;

END;

In state 3 the high-order half of a data byte is
obtained and shifted into the proper position of
the NEXT$BYTE variable. A transition is specified
to state 4.

78
79
80
81

/* SRL IN STATE 3 :;: HI ORDER HALF DATA BITE '/
00;

NEXT$BYTE ::: TEMP*16;
SRLINSTATE :;: 4;

END;

State 4 is the final state and requires more process­
ing than the others. First, a whole byte of data is
assembled by adding the low and high-order data
halves, and then testing to determine if the check­
sum has been received. If so, and the checksum is
correct, the parallel output procedure is executed.
Once the entire serial input record has been re­
ceived, a transition is specified to state 0 whether
the checksum is correct or not. However, if the

1-20

serial input count has not been exhausted, the
assembled byte is placed into the serial input
parallel output buffer and a transition back to state
3 is specified.

82
83
84
85
86
87
BB
89
90

91
92
93
94
95
96
97

98

If SRL IN STATE 1\ :;: LO ORDER HALf DATA BYTE */
00;

NEXT$BYTE ;- NEXT$BYTE + TEMP i
CHECKSUM = CHECKSUM + NEXT$BYTEj
IF' SRLINCNT ;- 0 THEN
00;

IF CHECKSUM ;: 0 WEN
CALL PARALLEL$OUT;

SRLINSTATE :: OJ
END;
ELSE
00;

SRLINPRL$OIJT$BFR(SRLlNPRT) = NEXT$BYTE;
SRLINPRT = SRLINPRT + 1;
SRLINCNT :: SRLINCNT - 1;
SRLINSTATE = 3:

END:
END;

END: 1* END OF CASES */

99 2 END SERIAL$CHAR$IN;

The serial character output procedure is similar to
the serial character input procedure. During state 0
the parallel inputs of the 8255's are stored in the
serial output parallel input buffer for transmhsion.

100 SERIAL$CHAR$OUT: PROCEDURE;

101 2

102 2

103 2

1011
105
106
107
10d

109
110
111
112
llJ

''" 115
116
117
118

119
120
121
122

123
12'
125
126

127
128
129
lJO
1Jl
132

133 3

DECLARE (CHAR,TEMP) SHE;

CHAR = OJ

DO CASE SRLOUTSTATE;

/* SRL OUT STATE 0 = RECORD MARK *1
00;

CHAR = ': I j
CALL PARALLEL$IN;
SRLOUTSTATE = ';

ENDj

/* SRL our STATE 1 = NMB PRTS */
DO;

TEMP = PRLINNMB$PRTS;
SR[.OUTCNT = TEMP;
SRL.OUTSTATE = 2 j

END;

/* SRL OUT STAfE 2 = STRT PRT *1
00;

TEMP = PRLINSTRT$PRT;
SRLOUTPRT = TEMP;
SRLOUTSTATE = 3;

END;

/* SRL OllT STATE 3 = HI ORDER HALF DATA BYTE */
00;

TEf~P = SHR(SRLOUTPRLINBFR(SRLOUTPRT), 4);
SRL.OUTSTATE = 4;

END;

/* SRL OUT STATE 4 = LO ORDER HALF DATA BYTE *1
00;

TEMP = SRLOUTPRLINBFR(SRLOUTPRT) AND OFH:
IF SRLOUTCNT = 0 THEN

SRLOUTSTATE = 0;
ELSE
00;

SRLOUTCNT = SRLOUTCNT - 1;
SRLOUTPRT = SRLOUTPRT + 1;
SRLOUTSTATE = 3;

END;
END;

END; /* END OF CASES */

'3lJ IF CHAR <> ,:, THEN
135 CHAR = CHAR$CONV(TEMP);
136 OllTPUT(USART$OUT) = CHAR;

137 2 END SERIAL$CHAR$OUTj

Interrupt Service Routine. The software in this
SCADA terminal application example is interrupt
driven. Interrupts, which occur when the trans­
mitter of the 8251 is ready for another character
Of when the receiver has obtained a serial charac­
ter, direct the execution of either the serial input

or output character procedures. The following
procedure is entered when an interrupt occurs.

13d 1 USART$INTERRUPT: PFOCEOUR£ IN1'ERRlJPr 7:

139 2 Dt:CLARE STATUS BYTE:

11m 2 STATUS = INPIJT(USART$STATUS)j

1111 IF (STATUS AND rXADY) = TXADY THEN
1112 CALL SERIAL$CHAR$OUT;

1113 IF (STATUS AND RXRJ>Y) = RXRDY TriEU
1411 CALi.. SERIAL$CHAH$IN i

145 2 END USART$INTgRRUprj

Main Program. The function of the main program
is rather simple. It calls the initialization routine
and then loops "FOREVER." Notice that the
other software is executed only when an interrupt
occurs. Rather than loop idly while waiting for an
interrupt, the "main program" could take advan­
tage of excess CPU time by processing some other
task.

146 1

147
14d

/
MAIN$PROGRAM:

............ /
CALL HUT:

00 FOREVER;
ENDj

1I~9 1 END:

1·21

SUMMARY /CONCLUSIONS

Further consideration should be given to error
checking in the implementation of a SCADA termi­
nal. A checksum has been used in this example
which provides some error detection but no
correction.

The industrial communication example in this
application note has shown a SCADA terminal.
Besides providing a convenient forum in which to
explore the use of PL/M in an interrupt-driven
environment, this application provides a realistic
and almost fully-developed tool for the replace­
ment of a multitude of parallel lines. Two such
systems can be connected through the serial lines
to provide a parallel to parallel transmission
scheme as shown in Figure 6.

SCADA TERMINAL ;,

SERIAL 1/0

Figure 6. Two SCADA Terminals

..----, PARALLEll/O

SCADA TERMINAL
;2

BIT SERIAL INTEHFI\CE

SERIAL OUTPUT

SERIAL INPUT

PARALLEl IN

Vee

! em "0"" tou"

r
~INX

SWITCH

INPUT

OUT 0

our 1

OUT 2

OUT 3

OUT4

OUT 5

OUT 7

OUT 8

OUT 10

OUT 11

OUT 13

OUT 14

OUT 15

OUT 16

OUT 17

OUT 18

OUT 19

OUT 20

OUT 21

OUT 22

'NO

IN 2

IN)

IN'

INS

IN'

INO

IN 10

IN 13

IN 14

IN 15

IN 16

IN 17

IN 18

IN 19

IN 21

IN22

IN 23

J
I

--.J
TERFACE_

-

iSBCS0l10A

r--u;51
(J331

(J1431

iJ1411

IJ1451

(J1471

IJ139)

1J1371

IJ135)

IJ1331

IJ171

U1SI

(J13)

1J111

(J19)

(J1111

(J1131

(J115)

(J1251

(J129)

(J119)

IJ1171

IJ1211

(Jl·2n

(J123)

(J1311

VCC

IJ243) f
IJ245)

(J247)

(J2491

(J241)

(J2391

(J2371

IJ235)

{J251 1
(J271

U291

(J23)

IJ2111

(J2l3)

(J2151

IJ217)

IJ225) f
IJ223)

(1221)

(J2191

(J227)

(J229)

IJ2311

U2331

Figure 7. SCADA Terminal Schematic

1·22

SERIAL INPUT

SERIAL OUTPUT

8226

A~

""'A-
.......
......

A~

A- ~
A~

A~ "'"
""'A-

7437

A~

""'A-
.............
""'A-

.......
...... A~

A-
............

7437

.A
A.

""'A-
A
......

A~

A
...... A

.....

GROUP 1
8255

r-----
I

PAC

I
PA,

I
I

PA,

PA)

~ PORT llAI
PA4

I
PAS

I
PAG

i
PA,

I
I
I

PBO

I
PB,

PB,
I

PB)
I PORT 2 (8)

I
PB,

PB5

PB6

PBl

I
I

PCO

1
PC, PORT 3 Ie)

1 UPPER
PC,

I PC)

1 ---
1

pc,

I pes PORT 31C)

PC6 LOWER

I
I PC,

-,
I
1

I
1

1

1

1

1

1

1

I
1

I
I
I
1

I
1

1

1

1

1

I
1

1

I
1

L ____
-.-J

GROUP2
8255 1Kr-----

.1 PAo

.1 PA,

.1 PA,

.1 PA)

.1 PORT4(M
PA4

I PAS

.1 PAG

.1 PA,

1

lKl
1

I
PBo

I
PB,

PB)

--' PB,
I PORTS (8)

I
PB,

PBS

--' PB6
I
I

PB,

1
lKl

PCo

PC, PORT6 Ie)

PC) UPPER

PC,

Po,

PCSpORT6 (CI
pe6 LOWER

PC7

L _____

-,
1

1

I
1

I
1

1

I
1

1

I
1

1

1

PROCESS CONTROL

Many single board computers have already been
applied in the field of process con tro!. Some of the
common denominators observed in these applica­
tions include the use of AID and D/A peripheral
boards, process monitoring functions such as
servicing display panels for operator interaction,
and alarm indicators.

Temperature Monitoring Application Example

A temperature monitoring system has been devel­
oped for the purposes of a process control applica­
tion example. The single open loop system utilizes
an AID converter, a multiplexed display, switches
for operator control, and two alarms. A block dia­
gram of the operator's panel is shown in Figure 8
and a schematic in Figure 9.

GROUP =2
8255

iSBC BO/10A
TEMPERATURE MONITORING

OPERATOR'S PANEL

/u ___ -j SWITCH

INPUT

7·SEGMENT
DATA

DIGIT SELECT &
ALARM
INDICATORS

Figure 8. Operator's Panel Block Diagram

Operator's Panel. The operator's panel in this
temperature monitoring system contains four
7-segment displays to show the temperature, two
light emitting diodes (LEOs) that indicate alarm­
low and alarm-high conditions, and six switches.
The function of the switches is as follows:

Set Limit - controls whether the current
temperature reading is to be displayed (off) or
if upper/lower limits are to be set (on).

Set Hi Lo - when set limit is "on", this switch
controls whether the low (off) or high (on)
limit is to be displayed.

Digit Selects - these two switches control the
selection of the digit of the limit which is to
be modified. The four binary positions 00,
01, 10 and II correspond to the four 7-
segment digits.

1-23

Leave It - controls whether the digit selected
is to be incremented (off) or maintained at its
current value (on). When this switch is "off"
the digit selected is incremented every 512 ms
until the operator turns the switch "on".

Enable Alarm - when set limit is "off" and the
current temperature is displayed, this switch
controls whether the action of the alarm indi­
cators is to be enabled (on) or disabled (off).

The simple means used to set upper and lower
temperature limits is similar to setting the time on
a digital wrist watch.

The purpose of the software is to initialize the
system and then to enter an endless loop which
accumulates 16 readings, updates the displayed
reading or handles limit setting, updates the display
latches, waits 4 ms, and obtains an A/D reading.

Temperature Monitoring Program. This application
example has been coded in Intel's resident PL/M-
80 language.

J'

'J

PROCESS CONTROL APPLICATION

OPEN LOOP

TEMPERATURE MONITOR

TEHPERATURE$MONITOR:

00;

The declaration statement includes some dimen­
sioned variables with INITIAL attributes. They
provide data strobe positions, a table of bit pat­
terns to convert BCD data to 7-segment data, and
a table of the powers of 10 for binary to BCD
conversions.

2 1 DECLARE
READING ADDRf..ss,
DIGITS(I!) BYTE INITIAL (80H,40H,20H, lOHl,
BCDTO'ISEG(11) BYTE INITIAL (3FH,06H,5BH,4FH,66H,

6DH, 7CH,07H, 7FH,67H,O),
TENS(4) ADDRE.':"-,s INITlAL (1000,100,10,1),
DIGIT$DATA(4) anE,
NXT$DIGIT BYTE,
UPDATE$COlJNT BYTE,
SET$COlJNT RYTE,
LIMIT(2) ADDRESS,
ACCUM$RDNG ADDRESS,

CwR LITERALLY' OEBH',
SLCT LITERALLY 'DEAH',
SEes LITERALLY 'OE3H',
SwTS LITERALLY 'D£9H',
SEfUP$PORTS LITERALLY '082H',

SET$LII-IIT LITERI\LLY 'D01H',
SETHILO LITERALLY 'OOlH',
LEAVE$IT LITERALLY 'OlOH',
DIGIr$SLCT LITERALLY 'oaCH',
ENABLE$ALARM LITEIlALLY '020H',
SET$ALARM$LO LITERALLY 'OOlH',
SET$ALARM$HI LITERALLY '003H',
HESET$ALAHM$LO LITERALLY 'GaOH',
RESET$ALARM$HI LITERALLY '002H',

TRUr.: LITERALLY 'OfrH',
FOREVER LITERALLY 'WHILE TRUE';

The analog to digital conversion procedure has
been coded in assembly language and is not in­
cluded in this application note. It is declared as an
external typed procedure with no arguments and
returns a value of the type address. The value
returned is the current temperature. The ATOD
procedure is linked later in a step to produce an
absolute load module of the entire program.

3 1 ArOD: P/1QCEDURE ADDRESS EXTERNAL;

4 2 END Aroo;

Bit set/reset functions of the 8255 have been used
to control the alarm-low and high output bits. Use
of this function allows individual bits to be con­
trolled without affecting others of port C which
are concurrently selecting the digit to be multi­
plexed on the display.

5 1 RESET$ALARMS: PROCEDURE j

OUTPUT(CWR) " RESET$ALARH$LOj
OllTPUT(CIoi'R) :: RESET$ALARrt$Hlj

d 2 END RESET$ALARMS;

The following procedure is used to initialize the
8255 and several program variables.

9 1 INIT: PROCEDURE;

10 OUTPUT(CwR) :: SETUP$PORTS;
11 CALL RESET$ALARMS;
12 NXT$DIGIT :: 0;
13 UPDATE$COUNT :: 0;
14 SET$COUNT ;: 7;
15 READING :' OJ
16 ACClJM$RDNG :: OJ
17 LIMIT(O) :: 0000;
ld LIM!T(1) :: 9999;

19 2 END INIT;

A multiplexed display is controlled by the soft­
ware. Two ports of an 8255 are required for this
function shown in Figure 9. The first output port
holds the data which drives the four 7-segment dis­
plays in parallel. The second output port contains
four strobes, each going to a separate common
cathode of one of the 7-segment displays.

The update display procedure begins by blanking
7-segment data in the output port. This step avoids
shadows that would be produced if the data for
the next digit position were loaded prior to up­
dating the strobe. The strobe is then advanced,
retaining the alarm bits that occupy other bits of
the same output port. Note that an output con­
figured 8255 port can be read with an 8080A
INPUT instruction to determine the currently
latched output data. The BCD data is obtained
from the next digit position of the DIGIT$DATA
array and used as a subscript into a table of
BCDT07SEG data. The 7-segment data is also

1-24

output to the 8255 port in
The procedure concludes
NXT$DIGIT pointer.

20 1 DISPLAi'$UPOATE: PROCEDURE;

21 OUTPUT(SEGS) :: 0;

the same statement.
by advancing the

22 OUTPUT(SLCT) :: (OIGITS(NXT$DIGIT) OR (INPUT('SLCT) AND 03H»;
23 OUTPUT(SEGS) :: BCDT07SEG(DIGIT$DATAUIXT$DIGIT));
2l.! NXT$DIGIT :: (NXT$DIGIT+ 1) AND 03H;

25 2 END DISPLAY$UPDATE;

Binary to BCD Conversion. Binary data from the
AID converter must be converted to BCD before it
can be used by the DISPLAY$UPDATE procedure
to show the current temperature reading. The
BINTOBCD procedure performs this conversion
operation.

26 1 BINTOBCD: PROCEDURE;

27 2 DECLARE (BCD,I) BYTE;

2d 2

29
30

31
32

J3 4

34 3

35 3

00 1 = 0 TO 3;

BCD = 0;
00 wHILE HEADING)= TENS(I);

READING" HEADING - TENS(r):
BCD=BCD+lj

END;

DIUIT$DATA(I) = BCD;

END;

36 2 END BINTOBCDj

BCD to Binary Conversion. The reverse conversion
process is also needed. That is, BCD data must be
converted to binary. This procedure is used to take
limits, which are set by manipulating BCD digits,
and convert them to binary data for use in testing
against current temperature readings. Based vari­
ables have been used in this procedure to allow
access to the actual variables used as arguments in
the calling program.

37 1 BCDTOBIN: PROCEDURE (BCD$ARRAY$ADR,BIN$DATA.$ADR);

38 2 DECLARE
(BCD$ARRAY$ADR ,BIN$DATA~ADR) ADDRESS,
(BCD$ARRAY BASED BCD$ARRAY$ADR) (4) BYTE,
(BIN$DATA. BASED BIN$DATI\$ADR) ADDRESS,
I BYTE;

39 BIN$DATA = OJ
40 00 I = 0 TO 3;

Itt BIN$DATA = BIN$DATA'l0 + BCD$ARRAY(I) IJ
41 BIN$DATA = SHL(BIN$DATA,1) + SHL(BIN$DATA,3) + BCD$ARRAY(I);
42 END;

43 2 END BCDTOBIN;

Updating the Display. The UPDATE procedure is
entered each time 16 readings have been taken
from the A/D converter. The UPDATE$COUNT is
reset and the operator switches are input to control
the execution path through the procedure. The
accumulated reading, which is the total of 16 AID
readings, is divided by 16 to obtain an average
reading. Then the accumulated reading is zeroed.

44 1 UPDATE: PROCEDURE:

45 2 DECLARE (SI<iTFLG,HILO,DIGIT) BYTE:

116 UPDATE$COUNT = 15;
47 SWT$FLG = INPUT(SWTS) j
48 READING = SHR{ACCUH$RDNG,IJ);
49 ACCUH$HDNG = 0;

Setting Limits. If the set limit switch is ON, the
limits are to be dealt with instead of testing and
displaying the current temperature reading. The
alarms are reset during limit setting. The specified
limit is converted to BCD and then the Leave-It
switch is tested to see if the digit selected is to be
incremented or held constant.

50
51
52
53
54
55
56

IF (SwT$FLG AND SET$LIHIT) = SETtLIMIT THEN
DO;

CALL RESET$ALARMS;
HI$LO = SHR({SWT$FLG AND SETHILO}, 1);
READING = LIHIT{HI$l.O);
CALL BINTOBCD;
IF (SIolT$FLG AND LEAVEtIT) <> LEAVE$IT THEN

Another counter is used to control digit incre­
menting. Its purpose is to control the rate at which
the selected digit is to be incremented. The major
loop in the program has a 4-millisecond delay.
Thus, 16 AID conversions require a period of
64 ms which provides an update frequency of 16
readings per second. This is too fast to accurately
select a desired digit which is being incremented.
SET$COUNT insures eight update periods (512
ms) between each increment. After the digit has
been incremented, the BCD limit value is con­
verted back to binary to set the respective limit.
This concludes the action taken when setting
limits.

57 00;
58 IF SET$COUNT = 0 THEN
59 00;
60 SET$COUNT = 7 i
61 DIGIT = SIIR((S'wT$F'LG AND DIGIT$SLCT), 2) i
62 IF DIGIT$DATA(OIGIT) = 9 THEN
63 OIGIT$DATA(OIGIT) = OJ

ELSE
64 DIGIT$DATA(DIGIT) = DIGIT$DATA(DIGIT) + 1;
65 CALL BCDTOBIN(,DIGIT$DATA, .LIHIT(HI$LO»;
66 END;

ELSE
67 SET$COUNT = SET$COUNT - 1:
68 END;
69 END;

Testillg the Averaged Reading. If the set limit
switch is OFF, then the averaged reading is to be
tested and displayed. The averaged reading is con­
verted to BCD and then a test is performed to
determine whether the reading is to be compared
with the upper and lower limits.

ELSE
70 00;
71 GALL BINTOSCDj
72 If (SWT$FLG AND ENABLt:$ALARM) = ENABLE$ALARM THEN

1-25

The reading is compared with both the upper and
lower limits if the alarms have been enabled. The
results of the tests are used to set and reset the
corresponding alarm output bits.

73
74
75

76 4

77
7d

79
do

DO;
IF HEADING (LIMIT{O) THEN

OUTFUT(CWR) = SET$ALARM$LO:
E:L.SE

OUTPUT(CWH) = RESET$ALARH$LOi

If !'lEADING> LltHr(1) THEN
OUTPUT{CwR) = SET$ALARM$Hli

ELSE
OUfPUT(CtlR) = RESET$ALARHSHI;

END;

If the alarms are not enabled, both the alarms are
reset to the "off" condition.

81
82

ELSE
CALL RESET$ALARMS,

END;

83 2 END UPDATE;

Main Program. The main program is shown below.
Its purpose is to initialize the system and then to
cycle, continuously executing the code previously
described.

/u .•••••••••••

HAIN$PROGRAM:

......... "' ... /
84 1 CALL INli;

85 1 00 fOREVER;

86 2 ACCUH$RDNG = ACGUM$RDNG + READING;

87 If UPDATE$COUNT = 0 THEN
88 CALL UPDATE:

ELSE
89 2 UPDATE$CQUNT = UPDATE$COUNT - 1;

90 CALL DISPLAY$UPDATE;
91 CALL TIME(40);
92 READING = ATOD;

93 2 END:

94 1 END:

SUMMARY ICONCLUSIONS

The goal of this application example is to demon­
strate some of the common functions required for
process control systems. Rather than show a small
portion of a larger, more complex problem, this
example was chosen because it presents a complete
solution to a smaller problem. In summary, refresh­
ing a multiplexed display was shown. Conversion
procedures for binary to BCD and BCD to binary
were used. A simple technique, in terms of hard­
ware requirements, was used to enter lower and
upper test values. And, limits testing was done,
providing alarm indicators.

r
I
I

GROUP:.o2 I
.255 I

I
I

VCC

-----,
I

PBs

I
PB,

I

PB3
PORT 5 (B) I

PB2

I
PB,

PBO I

I
I
I
I
I
I

PA7

I
PAa

:
PA5

I
PA<

: PORT 4 (AI

PA3

I
PA2

I PA,

I
PAa

I
I
I
I
I
I

PC7
I

I
I
I

PCa

I
I
I

PC5

I
PORT a leI I

I
PC,

I
I
I

PC,

I
I

PCo

L _____ J

iSBC SO/lOA

7437

.....
::::
:::.
::
::: ::
::: ::
~

7437

~
....

.....
~

.....
~

.....

.....

.....

_X-LOGIC

OPERATOR'S PANEL ,.
(J2·13) .. - ENABLE ALARM

(J2·11) - LEAVE IT

(J2·31 -
} DIGIT SELECT, IJ2·9) -

IJ2·7) - SET HI/CO

(J2·5) - SET LIMITS

0:-

VCC

20n

(J2·35) 2kU r.;
IJ2·371 VI'!::::
(J2-39) ~ ~

(J2·41) r.; ,'!::::
IJ~·491· G '!::::

IJ2-47) .r¥ ,\t::
(J2·45) G \!:::::

(J2·43) B r.; E, \t::
~

C '3 '2 11 a 5 3 4 '0
A B

~i
D E F

,~ ,.,P
~~ ,~ ~~ ~~ " 2,.

(J2·33)

<Q
!!

fJ2-31J

~
!!

(J2·29)

!:!

<Q (J2-27)
TIL313

VCC

(J2-23) ~o:-

\:Y
ALARM HI

(J2·25) ~
\:Y

ALARM LO

Figure 9. Operator's Panel Schematic

1-26

I/O DEVICE CONTROLLER

Peripheral processors have become common ele­
ments in computer systems of all sizes and capa­
bilities. The purpose of such a processor is to
relieve a central processor from the burden of
handling I/O devices. In effect, it is a form of
distributed processing. The iSBC 80/1 OA can be
used as a peripheral processor and/or as an I/O
device controller. In such a capacity it can signifi­
cantly reduce the amount of hardware required to
interface peripherals. Because the iSBC 80/1 OA
controls only I/O, it is of little consequence that
it must do a great deal of detail work that other­
wise wastes the processing capability of a larger
central processor.

Consider the activity of producing a listing on a
line printer. The overhead in maintaining a pro­
gram in the queue of a central processor which is
producing data for a line printer can seriously
impact system throughput. If, however, the pro­
gram were to send the list to a disk file and then
command a peripheral processor to take care of the
printing, a significant improvement in system
performance may be achieved. Printers represent
one example of a large number of I/O devices that
can be controlled by an iSBC 80/1 OA. Other
devices include cassettes, magnetic tape drives,
paper tape readers and punches, etc.

Character Printer Controller Application Example

The control of a Centronics 306 character printer
is used as an I/O device controller application
example. This example shows the interrupt capa­
bility of mode I 8255 operation. A block diagram
of the printer controller is shown in Figure 10 and
a schematic in Figure II.

Table 2. Printer Software Control Block

NAME POSITION

iSBC BO/10A
CENTRONICS

PRINTER

DATA

CONTROL

Figure 10. Printer Controller Block Diagram

When the mode I or mode 2 configuration is used,
software is generally required to support interrupts
used in conjunction with handshaking operations.
Software routines written for an interrupt driven
environment tend to be more complex than status
driven !'outines. The added complexity is because
interrupt-driven systems are constructed such that
other software tasks are run while the I/O transac­
tion is in progress. A software routine that controls
a peripheral device is generally referred to as a
device driver. One method of implementing an
interrupt-driven device driver is to partition the
device driver into a "command processor" anci an
"interrupt service routine." The command proces­
sor is the module that validates and initiates user
program requests to the device driver. A common
method of passing information between the various
software programs is to have the requesting routine
provide a device control block in memory. The
device control block used in this application
example is shown in Table 2.

DEFINITION

Status Byte a A l-byte field which defines the completion status of an I/O.

00 = Good completion
01 = Error - command already in progress.

Buffer Address Byte 1,2 Pointer to the start of the data to print.

Character Count Byte 3 Count of the number of characters to print.

Character Byte 4 The number of characters transferred.
Transferred Count

Completion Byte 5, 6 Address of a user supplied routine which will be called after the I/O has been
Address performed.

1-27

The command processor validates the transaction
anp initiates the operation described by the control
block. Control is then returned to the requester
so that other processing may proceed. The inter­
rupt service routine processes the remainder of the
transaction.

Interrupt Service Routine Requirements. The
interrupt service routine requires the following
functions:

I. The state of the machine (registers, status,
etc.) must be saved so that it may be re­
stored after the interrupt is processed.

2. The source of the interrupt must be deter­
mined. The hardware may support a register
whi'ch indicates the interrupting device, or
the software may poll the device status
registers.

3. Data must be passed to or from the device.

4. Control must be passed to the requesting
routine at the completion of the I/O.

5. The state of the machine must be restored
before returning to the interrupted program.

Printer Controller Program. The software for this
application has been coded using Intel® 8080
Macro Assembly Language.

0;
1 i U '"
2 ;
3 ; I/O DEVICE CONTROLLER APPLICATION

~ ; INTERRUPT DRIVEN
6 ;
7 ; CHARACTER PRINTER
8 ;
9 i •

The following program equates are used to allow
symbolic reference to the 8255 ports. Group # I
8255 on the iSBC 80/1 OA has been used because
it will support mode 1 operation.

10 ;
11 :H""
12 ; PROGRAM EQUATES
13 ;"111'
11l PORTA EOll OE4H
15 PORTS EQll 0E5H
16 PORTe EOU OE6H
17 CwR EQll OE7ti

; 8255 PORT A
; 8255 PORT B
; H255 PORT C
; $255 CONTROL WORD REGISTER

An initialization control word sent to the control
word register of the 8255 will set up the desired
configuration.

18 ;
19 ;
20 ;
?1 ;
22 ;
23 ;
24 ;
25 ;
26 ;
27 ;
28 ;
29 ;**111.
30 lew
31 i·

INIrIALIZATION CONTROL WORD

EQU

USED TO CONF IGURE THE 8255 AS FOLLOWS:

PORT A - OUTPUT MODE 1
PORT B - INPUT MODE 0 (NOr USED)
PORT C LOIolER - OUTPUT

101010108 ; INITIALIZATION CONTROL WORD

1-28

The bit set/reset capability of the 8255 is used to
control the strobe to the printer and to enable/
disable interrupts from the 8255.

32 ; SET/ RfSET CONTROL wORDS
33 ;
34 STBON BOll 00000001 B ; SET STROBE
35 STBOf EQU 000000008 ; RESET STROBE
36 ;uu'
37 ; 8255 ENABLE/DISABLE INTERRUPT CONTROL WORDS
3d jllU'

39 lEN EQLl 000011018 j ENABLE INTERRUPTS
40 ION EQU 00001100B ; DISABLE INTERRUPTS
41 ;'UII

Device status, control block, and completion
equates are shown below.

42 ; DEVICE SiATUS EQUATES
43 ;~u**
411 LPBSY BQU 080H

08H
; BUffER FULL (LINE PRINTER BUSY)
; INTERRUPT REQUEST 45 INTRA EQU

46 ; 'IIU

47 ; CONTROL BLOCK EQUATES
48 .111**

49 CBST t:Oll DOH
01H
03H
04H
05H

; STATUS BnE
50 CBUF BQU j BUFfER ADDRESS
51 cacc EQll ; CHARACTER COUNT
52 CBCT BOll ; CHARACTER TRANSfERED COUNT

j COMPLETION SERVICE ADDRESS 53 caCMP BQll
54 j.1II1I

55 ;
56 ;'U"
57 STGD
58 ST£1
59 ;.11 ..

COMPLETION STATUS EQUATES

EQU
EQU

DOH
01H

; GOOD Ca-IPLETION
; ERROR - COMMAND ALREADY IN PROGRESS

There are two ongm statements in this program.
The first origin at 38 hexadecimal is the entry
point used when an interrupt is generated by the
8255. A jump instruction to the printer interrupt
routine is stored at that location. The second
origin at 3000 hexadecimal is the address where
the rest of the code will be located.

60 ;
61 ; .. 11.

62
63
64 ;.111 ••
65 ;
66 j.lI ..

67
68 ;.1111

RESTART 7 ENTRY POINT

ORG 0038H
JMP PINT

PROGRAM ORIGIN

ORG 3000H

An initialization subroutine issues the mode con­
trol word to the 8255 control word register after
reset of the device. The printer strobe must then be
disabled.

69 ;
70 ;
71 ;
72 ;
73;
74 ;
75 INIT:
76
77
78
79
80
81

INITIALIZATION ROUTINE

A,H,L REGISTERS MODIFIED

MVI A,ICW; GET MODE CONTROL WORD
OUT CWR ; OUTPUT TO CONTROL WORD REGISTER
MVI A,STBON ; GET SET DATA STROBE CONTROL WORD
OUT CWR ; SET DATA STROBE (LOW TRUE SIGNAL)
RET ; RETURN TO CALLER

The command processor is started by the user
routine through a subroutine call to PSTRT, with
the address of the control block in the D and E
registers. The command processor insures that an
I/O operation is not already in progress, starts the
I/O, enables interrupts, and returns to the caller so
that other processing may proceed.

The flowchart and listing for the command proces­
sor are shown below.

82
83 ;
84 ;
85 ;
86 ;
87 ;
88 ;
89 ;
go ;
91 ;
92 ;
93 ;
94 PSTRT:
95
96
97
98
99

100
101
102
103
10'
105
106
107
108
109 ;u ...
110 ; .
111 j

112 P5TE:
113

'" 115

COMMAND PROCESSOR

INPUTS: CONTROL BLOCK ADDRESS IN P AND E REGISTERS

OUTPUTS: START 110 OR ERROR STATUS IN CONTROL BLOCK

A,H,L REoJISTERS MODIFIED

LOA
ANA

JNZ
XCHG
SHLD
XCHG
LXI
OAD
MVI
CALL
EI
RET

PIPRG+ 1 ; GET PRINT IN PROGRESS BLOCK ADDRESS
A ; SEE IF ZERO (PRINT IN PROGRESS)

; IF BLOCK ADDRESS NOT EQUAL TO ZERO THEN
; PRINT IN PROGRESS

psrE ; IF YES - BRANCH TO ERROR

PIPRO ; SAVE CONTROL BLOCK ADDRESS

H,CBeT ; GET INDEX TO C1
o ; COMPUTE ADDRESS OF C1
M,OOH ; CLEAR C1
PDATA ; START I/O

j ENABLE PROCESSOR INTERRUPTS
; RETURN TO CALLER

ERROR - TRANSACTION ALREADY IN PROGRESS

HVI A,SlE1; GET ERROR STATUS CODE
JMP POST ; PASS CONTROL TO COMPLETION ROUTINE

Interrupt Processing. When the 8255 generates an
interrupt, the interrupt request is serviced by the
8080A CPU. The CPU disables processor interrupts
and then executes the instruction at location 38
hexadecimal, which is a jump to the interrupt
service routine. The interrupt service routine saves
the processor state and polls the 8255 to determine
the source of the interrupt. Once the interrupting
device is identified, the printer output data routine

1-29

is called. After the entire buffer has been printed,
the interrupt service routine passes control to the
user-supplied completion routine. Before returning
from the interrupt, the state of the processor is
restored.

There are a number of error conditions which may
occur, such as an interrupt from a device that does
not have an active control block, or an interrupt
when polling establishes that no device requires
service. Neither of these errors should occur, but if
they do, the driver should perform in a consistent
fashion. The recovery routines implemented to
handle these interrupt error conditions are deter­
mined by the environment of the particular appli­
cation.

The flowchart and listing for the printer interrupt
service routine are shown below.

116
117 ;u,,,
118 ;
119 ;
120 j

121 PINT:
122
123

'" 125
126 ;'"''

INT7

PRINTER iNTERRUPT SERVICE ROUTINE
ALL REGISTERS SAVED AND RESTORED

PllSH PS\oI
PUSH B
PUSH D
PUSH H

SAVE PSW
SAVE REGISrER PAIR BAND C
SAVE REGISTER PAIR 0 AND E
SAVE REGISrER PAIR HAND L

127 ;
128 jU'"

129
130
131
132
133
134
135
136
137
138
139

'" 1111
1112 ;
143 j

11111 PRTN:
145
146
147
140
149
150
151 j'"''
152 :
153 j
1511 ;
155 ;
156 PPOLL:
157
158 j

159 ;
160 ;
161 ;
162 PIERl:
163
164

POLL INTERRUPT SOOReE .. SEE OF 8255

IN
ANI
JZ
MVI
OUT
EI
LHLD
XRA
CMP
JZ
XeHG
CALL

PORTC
INTRA
PPOLL
A,ION
ew.

PIPRG
A
H
PIERl

j GET STATUS OF DEVICE
; SEE IF HIT
; NO -BRANCH TO POlL OTHER DEVICES IF ANY
; GET 8255 INT DISABLE CONTROL WORD
j DISABLE DEVICE INTERRUPTS
; ENABLE PROCESSOR INTERRUPfS
; GET CONTROL aLOCK ADDRESS
; CLEAR A REG
; SEE IF PRINT IN PROGRESS
; NO - BRANCH TO ERROR ROUtINE

; PRINT DATA

RESTORE REGISTERS AND RETURN FROM INTERRUPf

POP
POP
POP
POP
EI
REf

H
o
8
PSw

; RE.,,)TORE REGISTER PAIR H A.ND L
i RESTORE REGISTER PAIR D AND E
; RESTORE REGISTER PAIR SAND C
; RESTORE PSW AND A.
; ENABLE PROCESSOR INTERRUPfS
; RETURN TO INTERRUPfED PROCESS

POLL OTHER DEVICES IF ANY
IF NO OTHER DIVICES TO POLL - USER SUPPLIED ERROR
RECOVERY ROUTINE.

JMP PRTN ; RETURN

ERROR - INTERRUPT FROM IDLE DEVICE
USER SUPPLIED ERROR RECOVERY ROUtINE

JMP PRTN ; RETURN

The printer output data routine places a character
in the output buffer of the 8255. Data in the
control block is used to direct the transfer of a
character. A data strobe signal is then generated
through the use of the port C bit set/reset feature.

The flowchart and listing for the printer output
data routine are shown below.

1-30

165
166 jun.
167 i
168 ; PRINTER OUTPUT DATA ROUTINE
169 ;
no j CONTROL BLOCK ADDRESS IN D AND E REG
171 ;
172 j

173 PDATA:
174 '" PORTe ; GET STATUS OF DEVICE
175 ANI LPBSY ; SEE IF BUSY (SUFFER FULL)
176 JZ POlO j IF BUSY _ BRANCH
177 LXI H,CBCT j GEl' INDEX TO CT
178 DAD 0 j COMPUTER ADDRE.SS OF CT
179 MOV A,M ; GET CT
180 I"R " ; INC CT
181 DC' H ; DEC TO CC
182 eMP M ; SEE IF EQUAL
183 JZ PCOMP IF EQUAL - OONE GO TELL USER
1d4 LXI H,CBUF GET INDEX TO BUFFER ADDRESS
185 DAD 0 COMPUTE ADDRESS OF BUrFER ADDRESS
106 PUSH 0 SAVE 0 AND E REGISTERS
187 MOV E,M GET LSB bF BUFFER ADDRESS
188 IN, H INC TO NEXT BYTE
189 MOV 0,M GET aUFFER MSB
190 MVI H,OOH CLEAR H REG
191 .'lOV L,A GET CT
192 DAD 0 j COMPUTER CHARACTER ADDRESS
193 MOV ',M j GET CHARACTER
194 OUT PORTA ; OUTPUT CHARACTER TO PRINTER
195 MVI A,STBOF ; RESET DATA STROBE (LOW TRUE SIGNAL)
196 OUf CWR
197 INR , ; GENERATE SET CONTROL WORD
198 OUT CWR j SET DATA STROBE
199 fOP 0 ; RESTORE CONTROL BLOCK ADDRESS
200 JMP PDATA ; LOOP UNTIL BUSY
201

If the printer is busy at the time the printer output
routine is called, a printer busy routine is executed.
The printer busy routine disables the processor
interrupts, enables the 8255 interrupts and then
enables the processor interrupts on its return to
the caller.

202
203 ;
2011 ;
205 ;
206 POlO:
207
208
209
210

PRINTER BUSY - RETURN

D1 ; DISABLE INTERRUPTS
MVI A,IEN j ENABLE DEVICE INTERRUPTS
OUT CriR ; SET INTERRUPT ENABLE
RET ; RETURN TO CALLER

When the printer output routine has exhausted the
data from the buffer, a good status code is posted
to the user. The command in progress flag is also
cleared.

211 ;
212 i
213 j

2111 ?COMP:
215
216
217
218
219
220

POST GOOD COMPLETION TO USER

MVI
CALL
'RA
STA
RET

A,STGD
,OST
A
PIPRG~'

; GET GOOD STATUS CODE
; POST TO USER
; CLEAR A REG
; CLEAR CctlMAND IN PROGRESS ADDRESS
; RETURN TO CALLER

The post to user completion routine obtains the
completion address from the device control block
and passes control to the user routine.

221
222
223
224
225
226
227
228
229
2)0
231
232
233
234

POST TO USER COMPLETION ROUTINE

INPUTS: STATUS CODE IN A REG
CONTROL BLOCK A.DDRESS IN D AND E REG

OUTPUTS: PASSES CONTROL TO USER CQHPLETION ADDRt.S
SPECIFIED IN CONTROL BLOCK
wITH CONTROL BLOCK ApDRESS IN D AND E RE

A,M,L,B,C REG MODIFIED

235 POST:
236
237
23B
239
,"0
2"
,"2
243
21111
245

XCHG
MOV
XCt!G
LXI
OAO
MOV
INK
MOV
PUSH
OKT

M,A. j UPDATE STATUS

H, CBCHP j GE:T INDEX TO CCt1PLETION ADDRF.5S
D j COMPUTE ADDRESS
C,M j GF;! LSB OF' GrnPLEl'ION ADDRESS
H j INC TO NEXT BYTE
8 ,M j GET MS8 OF CGiPLETION ADDRESS
8 j PUSH ADDRESS Ol~ STACK

; PASS CONTROL TO USER ROUTINE:
2116 j

2111 i DfS.!I. AND TABLES
2118 j

2119 ORG
250 PIPRG: OW
25'
252

3000H
a ; IN PROGRESS CONTROL BLOCK ADDRESS

; IF DATA = 0 NO CONTROL BLOCK IN PROGRESS
j IF DATA <> 0 CONTROL BLOCK IN PROGRESS

2S3 j

2511 j END OF MODE ONE EXAMPLE
255 j

256 ENO

SUMMARY /CONCLUSIONS

r
I
I

GROUP .,1
8255 I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
L

iSBC BO/10A CENTRONICS 306

-------,

PA7
I ::"37 (Jl·331

:::: (Jl·351
PAS

J::: PA5
(Jl·J71

~ (Jl·J91
PA4

PORT 1 (AI

~
(J147) DATA

PA3

I {Jl·451
PA2

I::: (Jl·411
PA, I

PAO H-t> (Jl·43)

I

J;;7 (J1-251
PCO D"AfASTROaE

i 'f PORT 31C)

I '"
I IJI.23)

PC. ACKNLG

ACKA I
I

------'

The iSBC 80/l0A has the capability to function in
the capacity of a peripheral processor and/or a
device controller. This capability is provided in
part by the interrupt support logic accompanying
the parallel I/O ports. This application example
shows how the iSBC 80/l0A requires only an inter­
connect to the device to be controlled. Figure 11. Printer Controller Schematic

CONCLUSION

The purpose of this application note has been to
expose the reader to a broad spectrum of potential
applications of the Intel iSBC 80/1 OA and System
80/10 products. Applications have been presented
in the areas of instrumentation, communication,
process control and I/O device control. The exam­
ples were limited to short problems that could be
completely described.

Intel's PL/M-80 and 8080 Macro Assembly Lan­
guage were both used in the examples. Instead of
using only assembly language, it was felt that
PL/M-80 should also be shown. Coding in an
algorithmic language is generally more natural than
assembly language and provides these added bene­
fits: reduced program development time and cost,
improved product reliability, and easier program
maintenance.

1-31

While the task of actually configuring the SBC
80/10 for the applications has not been described
in this note, detailed instructions are contained in
the tables of Chapter 4 in theiSBC 80/10 and iSBC
80/l0A Single Board Computer Hardware Refer­
ence Manual.

The Intel iSBC 80/ I OA has been designed to pro­
vide users with subsystems that have processing
power, memory storage, parallel and serial pro­
grammable I/O interfaces. A design goal of the
iSBC 80/10A was to minimize the requirements
for customized interface hardware in user applica­
tions. This application note has demonstrated the
achievement of this goal. The net effect is to
reduce the number of tedious design tasks, thus
allowing the systems designer to concentrate on
systems integration and other problems unique
to his job.

APPENDIX A
iSBC 80/10A SCHEMATICS

1-33

.....
w ...

~

-+ ~5 IQ" '.uJ _1J ~
~ II.IT 5!'>1 ,R:>4- Ae~· __ 0---0 "="

+/oJ. ,.;;, "". Z OK ;~ m_"/~ ." .. ' ,. - -~;;~~ " " 1:.- 11":'''i' - -"" ~= 'S~, ,~f ~ A;2 ~. - ~g~~ !

~
<LQ!
Sffi!

"'"

p, "'0 ".'" Leo .. OA" AD% !
EXT '''''' 'Ifill. ,OK ,oK "S04" j'''' ","7 ~,,, , ... ,:'" ~~i I ~

i~," '" R," :~:::: ::;'e :;.~ m 00 ~g: ~ 'ElJ>e ! ~11 Q'\.~'iJt'5' i;'S< ~ ,~~ ~E: = ~!
.,. '0"' ;\..J"-.,4 l'r.:. ... \~\I--" VPD ~"l.' iilil ::~O\ Rt>C>oto ~gRI' ~

o ss i ,~, ,J , '. -r--n' , 'llif°""'" =
, 1fb- ' ,<C"" .,,""/ ± GO r· . ~ -.. ' " ~
N'" .. 'C. f'" -"', 'yo 8~~~ ... ~ ~ , ,i l~ MB bj'!~' ~ ~::;,~ ,0 ';~! ::: ":'6'1[i; ,.~ ~ • • " ~ • .1&>8 ' c::: ,,0" ~, " ~o. ~,; , """,

""''''- YO ,-'.:i~~ ""', ,---- :,~ I: ~ -z' '.. E ;::?!'54 3 "~'"2. A~"!ll "'~ 'S.4l,'-~ ""'V.I ,," .," '---,,-' 0'- ..' ~,oo., .
R""" MM' 'P4>-=1 '," ;:~ ,:; ~~O' ...":.;;. ~Ii:;;~ ("p .e~" ';;P~"'. ": ° 'i;,",;'~t== ~~ l L-t-- 'i!.D::" t:Ml

10

1>1 r{~RoI>;jfAc~ 9 ~~bll (itTr Jt~" ,,~' ",';,," ~ : ~ ~ ~ ~ ~~E
10ROYoN! _ '0 '0' '" ,.,00 1 ".,. "";4'-" l= ,,~ .. '0 ',,' "OR7'

PRO" OOYO"/ ---" '" • "'" ~ A I-- :~ ,3D ".I- ,i~ , :~ oc,' ~," '" .. ,
RAM ROYO"/ " "Sao ","00 ,.""" ~ , "" • 00'''3 ~ ~ 5 --~JA'8. \l BuS ~ "'::I. til "'-l '~ 00", !:lIZ ;~ 49 AORbl I

"' """'0 ",,$" '4,,,",, ' .;::. ., 9 .,0 b "

'>3 ,OK I, '7 ,---- ""ocE rO' ."~, = At"''' ~ ~4_ i I ,. 04 --.m;- 0., -, , 4' 'ORA>

"'1'1 r~' "' .' " ;" -"'
,4.0<0. '~" ~~' ", ~~",,,,, ~ ,~; -:~ :' AORCO 14S00 ,A4b I I$V _~4b ';1L ~e"",, ..--L" ~, """'~ , , ~'. 'b AO"O'

".... ~ ',: ",,-01':.0 ~ " E.': .: "'" - ~ - --~
c~~Q 3 ,,';, r..

~ ~~'-t------~

~~ ~
"" c..'!> r

--~ f at ,.,
_-----d-oi ,

O TA v
M'i':.DCI
Mw'C.1
~02.C/
1:0....-..Jej
':>TATu:::,~t~""'"
MEME:./!I ZLMo
AtN MfMWI

~orE5~ uULE~S O""HE2.WI~E s~ec;"'IEo) ~CRI ~

~'i~~~~ t. THIS DOCUMENT REVLECTS ARTWORK. REV~D.~
~E515TOQ VALUES ARE IN OHMS 1/4W!. Sr.. •

3. CC.PA.(.lTOR VALUES o.RE: IN MIC.ROFARAOS 15V lOra 0

4. OI>J 2"1 AND J"2.,E.VEN P'r-.l~ ARE G~"-JCl.
@:::> A3 'fl.lRU A.1I,21,2:!I-Z(P ARE. 51-l0W~~FOR

CLARITY, ACTUAL COMPOI'>JENTS""'t..RE
CU5"TOMER INSTALLED.

@!:::> A4-1, 42.,14- MA'-I & '5Uf!6TITUTED INliH
A "'1q.LSL3~.

" "

a."c ~

16fl.ow/~
!!Iousy'/
CCL~I (~.'Z.HoV.H~)
ec.LKo/ (9.2.I!40MI-I1.)

INFORMATION AND SCHEMATICS
SUBJECT TO CHANGE WITHOUT
NOTICE, FOR REFERENCE ONLY.

c:"
CJ1

:{U .'I,ldllllllll .,rllIllllll •. TI,IIIIIII.;m11 IIII r= ""'MEM"'~

(ACRI:l ___ _

7ZJll ~~E~;----
37...£;.L AO"«f _____ •

t'~:~~" T2o.L ";"l,-SCO •

~2._1
AD",.D~X)'!:..J

II
~ I ' :tic i"---

~ ~IO~~
~ 1IOe

"l "'1 rob,14
I '2.,.D 811IA·4-

, I,O::!:c!. ~
.::::£ C£

~o.n

Ulli~~§~~~.l i :,: ,~ ., "" :::[.1::>.;
00 s,,,,,",,

, tl A~

~ CE~

I111111111 cCC.ooal

•~~' F f; :ttll'Z

n I" .- .-5. 5 ~~

-, A~ :rIo., '4
"l0081\\A.-'\­
""w"0fj

.'0 tt CE

~ 'lr ~::~,; DIM}~" n 4 !:>~
'S 5 I}o~ z

11Emiffi~' ",9; U04 0:; D""~
,: ~D~""'-4
IC'l U:: cr

LOC ~FiZ'G

Dr~~
OMj

5
:;'_,_4'520
~c.. e~ 'RAM'2DY'"I / ~ '5"Ze..&

/4500

"~

INFORMATION AND SCHEMATICS
SUBJECT TO CHANGE WITHOUT
NOTICE, FOR REFERENCE ONLY.

~ ~R!
lJ~9

iL~ ~JZk' ,'!I L.OC tiD , LOC. .q1ZlZ dr °:1.0- ~r-8''''0;~ ~ ;_-8?08:~ ~!~~~ ~~~J~ "----{, '~ ~a.5(O,

~ ~5 0;:7 '"1 "
~ e. 08"7

~c:.~ ~C~

.~,

R" [§>

~
{D"~

'=" I~
ADIaE:

II:: ::,ZO,!>

I ~ '~oi>----

~c'OOI,r~ S:: 10 ... ~~ _ 3

" '-'-{E> "<t 3~ ~E2: IlP3
-'41.:~OC: ~~ 11(. 1

+5V

~ E Io'I'f'bY1N/

~ MEMR/

~ 5 ~_

. A43
B

741.~C4 I
,.rlS04 L!:£E)0 .,.

- --_._-- --- -- - -

: ~J:,kk Il··--~ ... '9_ 1:1 LOC ~ 1'!I:t.1 I.-oc. c.~"

~lr6?OT~ ~r"_ ~ !;>A25 ~,~

~~~r~ ;~!~ ~G <;,1 

, " 
2. .... : oe" :z.~ e 0& 17 

~'Z ,.~ 

~Cfs- '----'" 

D!MU-=O 
~L~ CMiJ 

2," 

L.......!Q OBl. A55 ~~ P.P 
~De3 ~~ 

Dec 

ou e.OA'Ii!P 
~D~ ~~ 

~::~ VMEM C~tV 
L-Y. DB, JJi. 0 

'le. 
1;4LSOO 

""," 

~ 

ME ..... FlO 

--

~ 

j-----!£~~?\ 
~DB3~ ~!~ 

DB';' ~Pz-I._ 
b Del C\!,t3:-i 

~ 
0.", 

P'~MIt'CY\\o.I1 =... 
ADREF ~ 

INFORMATION AND SCHEMATICS 
SUBJECT TO CHANGE WITHOUT 
NOTICE, FOR REFERENCE DNL Y. 



c:., 
"-./ 

~ A~cigjJ ~~A~ :~':::.l!,, ______________________________________________ ~O~OYI""r ~ 
_ ~C51/ 

I ~CSa! Ii 
I?i> iilAUO RATE , ( P2- 50 

-;z.u{f; 
ADR:G 

~ 

74~~4-
13f'-.....12-

.5V 

~O'5c. 

" TTY IX 

2NZ'90~ 

I I "" 
- --- - --~ DATA SE"T RDY 

All; -ol.?" 

L¥.I4~_tli...., 
,2:,\3, _ I 

I ~ .. :~ 'a U .K ;23 Z<! ,t=:e=)IG. i. __ 
~I 246 

, II 41 ftf~~' :: 2~,t"._u, 
""'2.,2.."11< 

1\1\ :'I 2.41-( ?~~ IN. ~!I "'iZ..o!!.... 

T~ Cl~ /DAT.t. TE.RU'L ROT I It' 
",,",umEO D"A I I " I OBI} 

, I 4 Z 
? " I ~ ~ ~ j" ~ ~ 

co. 
?-~~l 

2.?r<. 

R3 J;' 

~ -1211~ ;~~ ~ ~~~~~ RET 

G.. 
'c"'~7 ". 4? 

~ .oWl 'I 
\ 1>.1 ¢~<'TTL..) 
I ~E~ET 
I CI A02.0 

" ~" 
,W 

INFORMATION AND SCHEMATICS 
SUBJECT TO CHANGE WITHOUT 
NOTICE, FOR REFERENCE ONLY. 



c:., 
(Xl 

~ "'D~0 
A021 
12~S.ET 
J:oeJ § \ Iowl 
C52.1 
C'51/ T biJ 

~ De., 

PI 

-5" ~ 1,,,,1(.81C24~<'.8~-SV 

I I +W~'-I"' 
.'ZVW

1 

: 59J l,w I,,,,, 
el' 1- r'·' I"':" .01 .1 UF 

C63'" 1 ca { 
"-2. I T .01 

lZAl STATUS '3TI?O".,£ 

l1l;& oa 

, I 
, I 

P1 

?4L-~ 

~ ,-~~~~ D~~~~C:; 
"'" 

AND SCHEMATICS 
CHANGE WITHOUT 
REFERENCE ON L Y. 



~ 

c::. 
CO 

.~v 

"'S:'.Z!.L 1m 55/ :=;~f======:::t00. :az!5! rllT511 r--c'il-<J~F--~--

5ZA!. I~.TO~~K I 

AZI:u T~~~'(~ ,AlKI 

3Ze.t ROM [IlVIUI :==~~~~~t=z~fH 
~IZAM!.DVINI 

'5V_~--' I 

14SOD 

UQTE~~ UlJl£.!IS OlI-lE£,WISE 5PHIFIED: 
1. nus DDC.UMllJT tEJ:U.tT~ AE1"MXK 'tEVA.", 
z. eE.~SiOIZ. VA.LUE..3 AIi!~ III OWMSo.I/4W.±5-". 
~ CAPAC-ITOe VAlUlS A2.," 1r.J M1t2nJ:"A2.A0S.Z~ 
B:> au JI AlIt) .J2 EV9J PIt.J~ AU G2.OUUI::::t.. 
~ A'!io Tl-ttru AlI,ZI,2:' llJe:U 'lID Ae.l SI-IOWU fOf. Cl..ArJiY. 

At.lUAL COMPOUUJTS Ai:l C.l.Jl"TOMt.1:. IlJSTALLE..D. 

~ A.AI,4Z 2'4 NAY &. ~&311'TUTED WIT~ A 'l4LSI~&. 

A •• 

1~~!l4 

.,v 
~p. fBtP 
~ 

14'5.~Z 

~'" _&.4 

~ 

<., 
10K 

'J
05 

~7U1Zrz 

p~~ 

~ 
PI 

INFORMATION AND SCHEMATICS 
SUBJECT TO CHANGE WITHOUT 
NOTICE, FOR REFERENCE ONLY. 



J,. 
o 

~~Bi 
UB7 

~
£{1l 

~ II 
AD~ 9 

AD" ME.M W/ 
TZM 

{;lDR C 
TZ..c! AOi. 0 

~12E. 

1Z.ru ME.M R./ 

-r:RB 1Zr:u ACe A. 

AOC, 

~ • = . = , 
ArJ GNO 8 AQ 6"10 4f.:.,fJ Gti\,) 

~' ~ ~ mil ~ i m" o I DIlu-
~ .3A40 ~ 3 A:."3 ~ 3A~BA< 
~ ~8IDZ'" ~ ~OOZA. ~ ~Bl02 g! ~ ~Gl ~ ~~ ~ ~~ ~ -====t! 2. 

tt " n ,3 I~ 3 13 3 13 

i~ 
3 A'Z ~~ 

~o 
5 A44 " • C3 

~C2 A41 574L'SOD EI 3205 
4.0.5'3(0 ~ 

- , 
'![ ONO 

~I 8'l 0111 
7 !l A~"l 

~4810l.A.. 
I 5 

~~ ~\Z 
~B "9 

3 13 TI 
III 

~ , ~ , 
A¢ C:JN.O .<1 ~ ~\.lO 

I 
~ ~ 0111 q Z 0111 

~ .0.3/0 3 A~:" 

~ ~B!D2A q ~8ImA. 
-------J 10 ~Io 
~7 1'2. ~~tl\llI'2 ~.B.~ 

~TI 
4A9 

N 3 13 3 13 

" 
3 

~ RPS 
IZK 

+sv 
1,-

~ , ~ q 

t(J GIJD 

~ ~ DIll § 3.,. 

~ Z. DIll 
~ .3A~~ ~r~ 
,~ ~BmA i510lA 

~ ~ OOIZ ~~ o;zII2 

-'===::.E A' ~A~ 
3 13 tT 3 13 tT 

,~ 
4 

EP4 
12K 

.sv 
1,-

P2tS) 

l~= DJf 

eAM eo'< IlIJ/ 
1Zll. 

INFORMATION AND SCHEMATICS 
SUBJECT TO CHANGE WITHOUT 
NOTICE, FOR REFERENCE ONLY, 



~ 

~
¢ 

~" I! 
ADR9 

~
O"-A 

IZQl I: 
AOCE 

+12V +5V 

,-____ J!<7DO ~E>8bCJ i 
7~ 

67~+SV66 
b5nYa~,~1~~-----------c-2B~1~~----------~-o11-~-------------, 

, '.f J; .I ~ .I;!; 
-5Y ..,. • --:-

IlfflllE I 11 11111 ' ,dllill I 1111111' P ~ D~U 

1 
~ 2.AM et)V Ihl/ __________ --j_t-_______________________ ---#-74l~OO :!~l! 

Cl.1 BOAED 

10 74L';}OD ~ 
9'fA:B):B tltEM CMW 

~ 

~ 
M~IIfIJ2/ 914L~g4 

[):43 

,JUMP,,!! TA.BL.E 

211t, 77-78 

2700 76-78 

A2b 

27013 0 -3FF (X)·7FF -BFF ·FF' 

74lS04 
5 f'.. .• r" 

k' F~ VA43 
::::A~~~~: 

T 5 V 3 DB82'''' DO~ Ii o DIo 

~ __ '-'--'''''00 ~o 2 

h~ cs DI~~: S 
1 15 

Ii> 
I 

DB"Z 

peOM eDY llJ/ 

~ 

INFORMATION AND SCHEMATICS 
SUBJECT TO CHANGE WITHOUT 
NOTICE, FOR REFERENCE ONLY. 



J,. 
N 

"TZru. AI:N lOWI 
~ IORI ==;:::::========'~0~14~OO t 14~~ TOenY 1""1 ~ 

• I "'. m~ ~ 
II I e.A,UD 2ATE UK ,CPZ-5O 

~ 

=11; -----,--., 
I~~ 
~ 4~1 10 

i18l o:::.c. 

:!.~ 

~ 

TXC.LK 

~7 

s. 
p-z.4£D 

EP; 
IH 

,""V 

T" t" ", 

-I-5V 

_13 
,-------1151 1lY IX 

Gl' 
Z\J2'OO 

" II 
~----H-+------4W-k", 11~=========~;;~(3] 2E.E.E\\IE.O OCI.iA. L CIlJ DAlA ~T f:EAtN 

J~ 'l.3fs IW Pi tLEAe TO ~t.JD 

c.HA!:.~15e:.\lO 1~I,q ~ -1'ZV~TT'f"TJt RE1UfkJ 
_ +12\/ ~ [)AcTA CA~2.lE.£ EE:TUffIJ 

W-12V .I>V ~?4'-'\D2 '_'K 
Il\ 'G:> 'Z fUT'e>J/ ~ 

7~,1l'f ~H "? 15 

TTV~~F9-____ J-7_.'_K ________ ~~~tt~~~~-t~'~.~==~=i~: I ~ E£(ENE UKI TTY R X en 
I 

TIUOOs~m£O~AQQ---------------~~~L+~~ 

T",a..K{[)A1A 1l12M'l ttr1~, i?,---------------~_j)-"'_+-----1 
2E£lTO~po---------------~-j)-¥'-+-----1 

GIJO~ 

1Zl>! 
1ZA! 
1ZA! = 

lOW I 
!Zi'l(TlL) 
1ZE~l 
AC2.Q) 

.. 
1.7\0{ 

<5 
?rK. 

m-., 
47,1/2'11 J3 
~ mTT)' £0 r:.DUl120l 

0.1 
?1I2'301 

+5V 

_1'ZV~Tll' 'Rt>c.ot..ll~Cl. EEl 

." 41,ZW 

INFORMATION AND SCHEMATICS 
SUBJECT TO CHANGE WITHOUT 
NOTICE, FOR REFERENCE ONLY. 



..... 
~ 

lZD! ADIi?;O 
1Z1l! A.D~I 
TZA! IU.3ET 

=i ru " J1 13:> 
~---~ 

iili ~TATU~ sn.OBE 
~ 01/1(80-"0) 

R'~ 40 0 41 522" RPI ~ +5V~4Z AI -tsvfo[f". 
" ry I~ IK ,: JI 13:> 

~ 
l!!J 
1 1 
G5J 

~ 
II 
Fl 
mJ 
I I 
l3SJ 

II 
mil 
I I 
lZ!!l 
1 I 

+5V 

~ 

.,. 
'>OK 

+5V 

<25 
O>K 

I-< PZ·"" 

Q' 
ZU 3~04 

A, 

'" 

II 1-
All I I 
§> I"~'----!I~ 

L-______ ~~ ~3~--~rn 

~ 
IUT5':;./~ 

T~ ~~,." 
f~4 ~ r -' 2 ~--------.----------~~E O'0'-rK~C~~ :;!--- 1'Z..C..:a. I 

Are I II 
[jb.Q.l=v;.J 

l'-lT[J ,74LWO 

-------------------------------4~~ 

INFORMATION AND SCHEMATICS 
SUBJECT TO CHANGE WITHOUT 
NOTICE, FOR REFERENCE ONLY. 




